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Abstract Third generation sequencing technologies Pacific Biosciences and Oxford Nanopore
Technologies were respectively made available in 2011 and 2014. In contrast with second
generation sequencing technologies such as Illumina, these new technologies allow the se-
quencing of long reads of tens to hundreds of kbps. These so-called long reads are partic-
ularly promising, and are especially expected to solve various problems such as contig and
haplotype assembly or scaffolding, for instance. However, these reads are also much more
error prone than second generation reads, and display error rates reaching 10 to 30%,
depending on the sequencing technology and to the version of the chemistry. Moreover,
these errors are mainly composed of insertions and deletions, whereas most errors are
substitutions in Illumina reads. As a result, long reads require efficient error correction,
and a plethora of error correction tools, directly targeted at these reads, were developed in
the past nine years. These methods can adopt a hybrid approach, using complementary
short reads to perform correction, or a self-correction approach, only making use of the
information contained in the long reads sequences. Both these approaches make use of
various strategies such as multiple sequence alignment, de Bruijn graphs, hidden Markov
models, or even combine different strategies. In this paper, we describe a complete survey
of long read error correction, reviewing all the different methodologies and tools existing
up to date, for both hybrid and self-correction. Moreover, the long reads characteristics,
such as sequencing depth, length, error rate, or even sequencing technology, can have an
impact on how well a given tool or strategy performs, and can thus drastically reduce the
correction quality. We thus also present an in-depth benchmark of the available long read
error correction tools, on a wide variety of datasets, composed of both simulated and real
data, with various error rates, coverages, and read lengths, ranging from small bacterial
to large mammal genomes.

Keywords long reads, error correction, hybrid correction, self-correction

1 Introduction

Since their inception in 2011 and 2014, third generation sequencing technologies Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT) became widely used and allowed the sequencing of
massive amounts of data. These technologies distinguish themselves from second generation sequencing
technologies, such as Illumina, by the fact that they allow to produce much longer reads, reaching
lengths of tens of kbps on average, and up to 1 million bps [1]. Thanks to their length, these so-called
long reads are expected to solve various problems, such as contig and haplotype assembly of large
and complex organisms, scaffolding, or even structural variant calling, for instance. These reads are
however extremely noisy, and display error rates of 10 to 30%, while second generation short reads
usually reach error rates of around 1%. Moreover, long reads errors are mainly composed of insertions
and deletions, whereas short reads mainly contain substitutions. As a result, in addition to a higher
error rate, the error profiles of the long reads are also much more complex than the error profiles of
the short reads. In addition, ONT reads also suffer from bias in homopolymer regions, and thus tend
to contain systematic errors in such regions, when they reach more than 6 bps. As a consequence,
error correction is often used as a first step in projects dealing with long reads. Since the error profiles
and error rates of the long reads are much different than those of the short reads, this necessity led to
new algorithmic developments, specifically targeted at these long reads.

Two major ways of approaching long read correction were thus developed. The first one, hybrid
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correction, makes use of additional short reads data to perform the correction. The second one, self-
correction, on the contrary, attempts to correct long reads solely based on the information contained in
their sequences. Both these approaches rely on various strategies, such as multiple sequence alignment,
de Bruijn graphs, or hidden Markov models, for instance. Since 2012, 29 different long read correction
tools were thus developed.

1.1 Contribution

In this paper, we propose a description of the state-of-the-art of long read correction. In particular,
we draw a summary of every single approach described in the literature, both for hybrid correction and
for self-correction. In addition, we also dress a list of all the available methods, and briefly describe
the strategy they rely on. We thus propose the most complete survey on long read correction up to
date.

Additionally, long reads characteristics, such as the sequencing depth, the length, the error rate,
and the sequencing technology, can impact how well a given tool or strategy performs. As a result, a
given tool performing the best on a given dataset does not mean that this same tool will perform the
best on other datasets, especially if their characteristics fluctuate from one another. As a result, we
also present a benchmark of available long read correction tools, on a wide variety of datasets with
diverse characteristics. In particular, we assess both simulated and real data, and rely on datasets
having varying read lengths, error rates, and sequencing depths, ranging from smaller bacterial to
large mammal genomes.

2 State-of-the-art

As mentioned in Section 1, the literature describes two main approaches to tackle long read error
correction. On the one hand, hybrid correction makes use of complementary, high quality, short reads
to perform correction. On the other hand, self-correction attempts to correct the long reads solely
using the information contained in their sequences.

One of the major interests of hybrid correction is that error correction is mainly guided by the
short reads data. As a result, the sequencing depth of the long reads has no impact on this strategy
whatsoever. As a result, datasets composed of a very low coverage of long reads can still be efficiently
corrected using a hybrid approach, as long as the sequencing depth of the short reads remains sufficient,
i.e. around 50x.

Contrariwise, self-correction is purely based on the information contained in the long reads. As
a result, deeper long reads coverages are usually required, and self-correction can thus prove to be
inefficient when dealing with datasets displaying low coverages. The required sequencing depth to
allow for an efficient self-correction is however reasonable, as it has been shown that from a coverage
of 30x, self-correction methods are able to provide satisfying results [2].

We present the state-of-the-art of available long read error correction methods. More particularly,
we describe the various methodologies adopted by the different tools, and list the tools relying on
each methodology, both for hybrid and self-correction. Details about performances, both in terms of
resource consumption and quality of the results, are however not discussed here. Experimental results
of a subset of the available correction tools, on various datasets displaying diverse characteristics, are
presented in Section 3. A summary of the available hybrid correction tools is given in Table 1. A
summary of the available self-correction tools is given in Table 2.

2.1 Hybrid correction

Hybrid correction was the fist approach to be described in the literature. This strategy is based on
a set of long reads and a set of short reads, both sequenced for the same individual. It aims to use the
high quality information contained in the short reads to enhance the quality of the long reads. As first
long read sequencing experiments displayed high error rates (> 15% on average), most methods relied
on this additional use of short reads data. Four different hybrid correction approaches thus exist:

1. Alignment of short reads to the long reads;

2. Alignment of contigs and long reads;

3. Use of de Bruijn graphs;
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4. Use of Hidden Markov Models.

We describe each approach more in details, and list the related tools, in the following subsections.

2.1.1 Short reads alignment

This approach was the first long read error correction approach described in the literature. It
consists of two distinct steps. First, the short reads are aligned to the long reads. This step allows to
cover each long read with a subset of related short reads. This subset can then be used to compute
a high quality consensus sequence, which can, in turn, be used as the correction of the original long
read. The different methods adopting this approach mainly vary by the alignment methods they
use, and also by the algorithmic choices made during the consensus sequences computation. PBcR /
PacBioToCA [3], LSC [4], Proovread [5], Nanocorr [6], LSCplus [7], CoLoRMap [8], and HECIL [9]
are all based on this approach.

2.1.2 Contigs alignment

Given their length, short reads can be difficult to align to repeated regions, or to extremely noisy
regions of the long reads. This approach aims to address this issue by first assembling the short reads.
Indeed, the contigs obtained after assembling the short reads are much longer than the original short
reads. As a result, they can cover the repeated or highly erroneous regions of the long reads much more
efficiently, by using the context of the adjacent regions during the alignment. In the same fashion as
the short reads alignment strategy described in Section 2.1.1, the contigs aligned with the long reads
can then be used to compute high quality consensus sequences, and thus correct the long reads they
are associated to. Once again, the different methods adopting this strategy vary by the alignment
methods they use, and by the algorithmic choices made during consensus computation. ECTools [10],
HALC [11], and MiRCA [12] adopt this methodology.

2.1.3 De Bruijn graphs

Another alternative to the alignment of short reads to the long reads is the direct use of a de Bruijn
graph, built from the short reads k-mers. This approach aims to avoid the explicit step of short reads
assembly altogether, contrary to the fmethods mentioned in Section 2.1.2, and instead directly use
the graph to correct the long reads. The graph is first built from the solid k-mers of the short reads
(i.e. k-mers appearing more frequently than a given threshold). The long reads can then be anchored
to the graph according to their k-mers. Finally, the graph can be traversed in order to find paths,
and link anchored regions of the long reads together, and thus correct erroneous, unanchored, regions.
Methods adopting this approach vary by the way they represent the graph, but also by the way they
anchor the long reads to the graph, and by the way they correct unanchored regions. LoRDEC [13],
Jabba [14], FMLRC [15], and ParLECH [16] rely on this strategy.

2.1.4 Hidden Markov models

Hidden Markov models, used for short read error correction, were also adopted for the error
correction of long reads. To this aim, models are first initialized in order to represent the original
long reads. A subset of short reads is then assigned to each long read, by alignment. Each subset of
short reads can then be used to train the model it is associated to. Finally, the trained models can be
used to compute consensus sequences, and thus correct the long reads they represent. Hercules [17] is
based on this approach.
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2.1.5 Combination of strategies

Other methods combine different of the aforementioned strategies, in order to balance their ad-
vantages and drawbacks. For instance, NaS [18] combines a first step of short reads alignment to a
second step of short reads recruitment and assembly in order to correct the long reads. HG-CoLoR
[19] is also based on a first step relying on short reads alignment, but then makes use of a variable
order de Bruijn graph (i.e. a single data structure containing all the de Bruijn graphs between k and
K) in order to correct regions of the long reads that were not covered by the original alignments.

2.2 Self-correction

Self-correction aims to avoid the use of short reads data altogether, and to correct long reads
solely based on the information contained in their sequences. Third generation sequencing technologies
indeed evolve fast, and now allow the sequencing of long reads reaching error rates of 10-12%. As a
result, correction is still required to properly deal with errors, but self-correction has recently undergone
important developments. Two different self-correction approaches thus exist:

1. Multiple sequence alignment;

2. Use of de Bruijn graphs.

We describe each approach more in details, and list the related tools, in the following subsections.

2.2.1 Multiple sequence alignment

This approach is highly similar to the short reads alignment approach for hybrid correction, de-
scribed in Section 2, and to the contigs alignment approach described in Section 2.1.2. It is thus
composed of a first step of overlaps computation between the long reads, and of a second step of
consensus computation from the overlaps. The overlaps computation can be performed either via a
mapping strategy, which only provides the positions of the similar regions of the long reads, or via
alignment, which provides the positions of the similar regions, as well as their actual base-to-base
correspondence in terms of matches, mismatches, insertions and deletions. For the consensus com-
putation step, a directed acyclic graph (DAG) is usually built in order to summarize the alignments,
and extract a consensus sequence. Methods adopting this strategy thus vary by their overlapping
strategy, but also by their algorithmic choices during the consensus computation. PBDAGCon (the
correction module used in the HGAP assembler) [20], PBcR-BLASR [21], Sprai 4 [22], PBcR-MHAP
[23], FalconSense (the correction module used in the assembler Falcon) [24], Sparc [25], the correction
module used in the assembler Canu [26], MECAT [27] and FLAS [28] rely on this approach.

2.2.2 De Bruijn graphs

This approach is similar to the hybrid correction approach using de Bruijn graphs, mentioned in
Section 2.1.3. In a first step, the graph is built from the long reads k-mers, and in a second step, the
graph is traversed in order to find paths allowing to correct unanchored regions of the long reads. The
main difference with the hybrid approach comes from the fact that here the graph is only constructed
from the solid k-mers from the long reads. The methods adopting this approach mainly differ by the
scale at which the graph is built. On the one hand, it can be built globally, by studying the frequency
of all the k-mers appearing in the reads. On the other hand, it can be built locally, by first computing
overlaps between the long reads, in order to define small similar regions of the long reads, and then
building small, local graphs at the scale of these regions. LoRMA [29] and Daccord [30] are based on
this approach.

4. http://zombie.cb.k.u-tokyo.ac.jp/sprai/index.html
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2.2.3 Combination of strategies

As for hybrid correction, some methods also rely on combinations of the two previously described
strategies. For instance, CONSENT [31] relies on both multiple sequence alignment and de Bruijn
graphs. It first computes overlaps between the long reads, using a mapping approach. Small, similar
regions of the long reads (called windows) are then defined from these overlaps. Windows are then
processed in two different steps. First, a multiple sequence alignment strategy is used in order to
compute a consensus sequence for each given window. Once a consensus sequence is computed for a
given window, it further goes through a second correction step, in which a local de Bruijn graph is
built and traversed in order to further polish remaining errors.

2.3 Summary

In this section, we draw a summary of the available hybrid and self-correction methods. For
each method, we recall the main strategy or strategies it relies on, and the sequencing technologies it
has been validated on. Hybrid correction tools are summarized in Table 1. Self-correction tools are
summarized in Table 2.

Method Approach Release Validated on
PBcR SR alignment 2012 PacBio
LSC SR alignment 2012 PacBio
ECTools Contigs alignment 2014 PacBio
LoRDEC DBG 2014 PacBio
Proovread SR alignment 2014 PacBio
Nanocorr SR alignment 2015 ONT
NaS SR alignment 2015 ONT
CoLoRMap SR alignment 2016 PacBio
Jabba DBG 2016 PacBio
LSCplus SR alignment 2016 PacBio
HALC Contigs alignment 2017 PacBio
HECIL SR alignment 2018 PacBio
Hercules Modèles de Markov cachés 2018 PacBio
FMLRC DBG 2018 PacBio
HG-CoLoR SR alignment + DBG 2018 PacBio + ONT
MiRCA Contigs alignment 2018 ONT
ParLECH DBG 2019 PacBio

Tab. 1. List of long read hybrid correction tools.

Method Approach Release Validated on
PBcR-BLASR MSA 2013 PacBio
PBDAGCon MSA 2013 PacBio
Sprai MSA 2014 PacBio
PBcR-MHAP MSA 2015 PacBio
FalconSense MSA 2016 PacBio
LoRMA DBG 2016 PacBio
Sparc MSA 2016 PacBio + ONT
Canu MSA 2017 PacBio + ONT
Daccord DBG 2017 PacBio + ONT
MECAT MSA 2017 PacBio + ONT
CONSENT MSA + DBG 2019 PacBio + ONT
FLAS MSA 2019 PacBio

Tab. 2. List of long read self-correction tools.

3 Qualitative comparison

In this section, we study how the characteristics of the datasets impact the quality of the afore-
mentioned error correction methods. However, we exclude the following tools, since they could not
install or could not be run: FalconSense, HECIL, LSCplus, MiRCA, PBcR, PBcR-BLASR, PBcR-
MHAP, PBDAGCon, Sparc, and Sprai. We also exclude the following tools, for performance reasons:
ECTools, Hercules, LSC, Nanocorr, and NaS.

3.1 Datasets

We study the performances of the different tools on a set of six different datasets: one from
Acinetobacter baylyi, three from Saccharomyces cerevisiae and two from Caenorhabditis elegans. A
summary of these datasets is given in Table 3. We only showcase results on these datasets for
place sake, but actually performed a much more in-depth benchmark, on a total of 20 datasets.
Complete results of this benchmark are available in the extended bioRxiv preprint, available at:
https://doi.org/10.1101/2020.03.06.977975.

3.2 Results

To evaluate the quality of the correction provided by each tool, we used ELECTOR [32], a software
specially developed for large scale error correction tools benchmark. The results of our experiments
are summarized in Table 4. For place sake, we only provide the number of corrected bases, and the
error rate of the reads after correction, as well as the time and memory consumption of each tool.

Paper 1

6



However, as previously mentioned, the actual benchmark we performed provides a large number of
additional metrics. These results nonetheless illustrate how the different characteristics impact the
quality of the correction, and the performances of each tool.

Dataset Number of reads Error rate Coverage Number of bases
Simulated PacBio data
S. cerevisiae 30x 45,198 12.28 30x 371 Mbp
C. elegans 30x 366,416 12.28 30x 3,006 Mbp
S. cerevisiae 60x 90,397 12.28 60x 742 Mbp
C. elegans 60x 732,832 12.28 60x 6,011 Mbp
Real ONT data
A. baylyi 89,011 29.91 106x 381 Mbp
S. cerevisiae real 205,923 44.51 95x 1,173 Mbp

Tab. 3. Characteristics of the datasets used during the experiments.

Tool Metric S. cerevisiae 30x C. elegans 30x S. cerevisiae 60x C. elegans 60x A. baylyi S. cerevisiae real

CoLoRMap

Number of bases (Mbp) 343 1,198 664 - 141 165
Error rate (%) 0.3183 0.8955 0.6143 - 0.4921 0.3042
Runtime 4 h 36 min 150 h 21 min 8 h 08 min - 3 h 41 min 10 h 44 min
Memory (MB) 14,243 32,267 24,375 - 13,028 18,241

FMLRC

Number of bases (Mbp) 348 2,821 695 5,652 391 1,185
Error rate (%) 0.2447 1.4161 0.2469 1.4213 0.3221 3.2836
Runtime 1 h 59 min 11 h 55 min 3 h 57 min 23 h 25 min 2 h 01 min 6 h 15 min
Memory (MB) 892 7,937 4 h 25 min 7,937 449 876

HALC

Number of bases (Mbp) 348 2,819 694 5,649 190 255
Error rate (%) 0.3611 1.0897 0.3648 1.0880 0.1655 0.7067
Runtime 1 h 53 min 9 h 30 min 4 h 25 min 19 h 10 min 47 h 41 min 2 h 56 min
Memory (MB) 1,892 2,853 2,487 5,716 10,577 2,329

HG-CoLoR

Number of bases (Mbp) 347 2,795 690 - 285 512
Error rate (%) 0.5115 1.1664 0.5995 - 0.0240 0.2824
Runtime 7 h 20 min 108 h 26 min 12 h 23 min - 1 h 34 min 8 h 51 min
Memory (MB) 3,656 27,212 7,297 - 3,750 11,575

Jabba

Number of bases (Mbp) 340 2,464 679 4,935 179 243
Error rate (%) 0.1067 0.2319 0.1040 0.2312 0.0774 0.1111
Runtime 5 min 43 min 5 min 49 min 2 min 7 min
Memory (MB) 1,215 13,362 1,215 13,360 1,217 1,217

LoRDEC

Number of bases (Mbp) 348 2,824 696 5,657 175 221
Error rate (%) 0.3990 1.2710 0.3948 1.2731 0.0552 1.1832
Runtime 35 min 11 h 30 min 1 h 09 min 23 h 30 min 16 min 1 h 09 min
Memory (MB) 799 2,320 794 2,332 436 797

Proovread

Number of bases (Mbp) 342 2,704 971 - 156 160
Error rate (%) 0.2365 0.4325 0.2568 - 0.0314 0.1021
Runtime 5 h 37 min 85 h 23 min 11 h 51 min - 3 h 25 min 13 h 42 min
Memory (MB) 16,777 29,934 23,591 - 10,618 8,709

Canu

Number of bases (Mbp) 226 2,773 599 5,112 81 -
Error rate (%) 1.1052 0.5008 0.7919 0.7934 5.4081 -
Runtime 29 min 9 h 09 min 1 h 11 min 9 h 30 min 31 min -
Memory (MB) 3,681 6,921 3,710 7,050 3,015 -

CONSENT

Number of bases (Mdp) 344 2,787 688 5,586 183 179
Error rate (%) 0.4258 0.6720 0.2812 0.3806 8.0530 23.2735
Runtime 47 min 7 h 55 min 1 h 49 min 19 h 13 min 48 min 40 min
Memory (MB) 5,514 16,772 11,335 15,607 5,150 14,663

Daccord

Number of bases (Mbp) 348 - 695 - 175 -
Error rate (%) 0.1259 - 0.0400 - 6.7454 -
Runtime 1 h 19 min - 2 h 26 min - 43 min -
Memory (MB) 31,798 - 32,190 - 25,801 -

FLAS

Number of bases (Mbp) 344 2,729 689 5,584 165 221
Error rate (%) 0.3272 0.7613 0.2034 0.3997 8.3926 22.8287
Runtime 29 min 3 h 07 min 1 h 30 min 10 h 45 min 32 min 39 min
Memory (MB) 2,935 10,565 4,984 13,682 3,015 7,398

LoRMA

Number of bases (Mbp) 14 33 443 781 76 11
Error rate (%) 2.1640 3.6960 0.2225 0.6446 1.9290 4.7390
Runtime 46 min 8 h 19 min 5 h 25 min 31 h 04 min 29 min 1 h 35 min
Memory (MB) 31,899 31,827 31,828 32,104 31,575 1,505

MECAT

Number of bases (Mbp) 285 2,084 616 4,938 154 84
Error rate (%) 0.3040 0.3908 0.2088 0.2675 8.5324 19.9237
Runtime 5 min 48 min 16 min 2 h 43 min 23 min 14 min
Memory (MB) 2,907 10,535 4,954 10,563 2,978 7,374

Tab. 4. Results of the different tools on the studied datasets. CoLoRMap, HG-CoLoR, and Proovread were
not run on the C. elegans 60x dataset, due to their runtimes being too large. Daccord could not be run on the
two C. elegans datasets, and on the S. cerevisiae real dataset as it consumed a large amount of memory, and
could not even be run on a cluster node with 128 GB of RAM. Canu reported an error on the S. cerevisiae real
dataset.

Paper 1

7



4 Conclusion

In this paper, we presented the state-of-the-art of long read error correction, tackling both hy-
brid and self-correction. For each approach, we described the different existing methodologies, and
listed all tools available at the moment. Four different approaches thus exist for hybrid correction:
short reads alignment, contigs alignment, use of de Bruijn graphs and use of hidden Markov models.
For self-correction, two main methodologies exist: multiple sequence alignment and use of de Bruijn
graphs. As of today, a total of 29 different methods exist for performing long read error correction.

We also showcased how the long reads datasets characteristics can impact the quality of the correc-
tion. In particular, our experiments show that self-correction performs better than hybrid correction
as the sequencing depth grows. Oppositely, given high error rates, hybrid correction tends to perform
the best, even when the sequencing depth is high. In addition, our experiments also underline the fact
that self-correction tends to perform better when the complexity of the sequenced organism grows.

Further work shall focus on a more in-depth description of each available tool, to give the reader
a better understanding of the algorithmic differences exiting between tools adopting the same ap-
proaches. In addition, more datasets could also be studied, in order to provide better guidelines as to
which tool to choose according to the datasets characteristics.
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Abstract 
Due to recent advances in the field of oncology, and especially the increased use of liquid biopsy to                  
monitor the tumor burden in the blood, the rise of new variant calling algorithms or strategies adapted to                  
the low frequency variant detection has become a must. Because of PCR enrichment and sequencing               
technologies limitations, artifactual variants (sequencing and DNA polymerase errors) are also introduced            
at low frequencies making the distinction between real variants and artifactual ones a true challenge.               
However, the recent use of Unique Molecular Identifiers (UMI) in targeted sequencing protocols has              
offered a trustworthy approach to accurately call low frequency variants. 

Here, we present UMI-VarCal, a new UMI-based variant caller with remarkably higher specificity 
compared to raw-reads-based variant callers. Although our variant caller is far from being the only one 
that uses UMI information to call variants, UMI-VarCal stands out from the crowd by not relying on 
SAMtools to do its pileup. Instead, thanks to an innovative homemade pileup algorithm specifically 
designed to treat the UMI tags present in the reads, our variant caller surpasses the other variant callers 
(OutLyzer [1], DeepSNVMiner [2], SiNVICT [3]) in terms of specificity. Furthermore, being developed 
with performance in mind, our tool is considerably more efficient than the other approaches in terms of 
execution time and memory consumption. 

We illustrate the results obtained using UMI-VarCal through the sequencing of 3 samples from patients 
suffering from lymphoma and 2 simulated samples (at different depths) in which we inserted a known set 
of variants. We demonstrate that UMI-VarCal can detect variants with frequencies as low as 0.3% and 
filter out false positives resulting in a sensitivity that outmatches other variant callers. 
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Abstract Protein structures are highly dynamic macromolecules. This dynamics is often 
analyzed with a limited number of proteins. In our study, molecular dynamics (MDs) 
simulations were performed on a large set of 169 representative protein domains. To investigate 
protein flexibility, classical approaches such as RMSf or solvent accessibility were used, but 
also innovative approaches such as local entropy.  
At first, classical secondary structures were explored. Concerning the helical structures, only 
76.4% of the residues associated to α-helices retain the conformation; this tendency drops to 
40.5% for 310-helices and near zero for π-helices. However, this last impressive non-stability is 
entirely dependent on the assignment approach. Indeed, with the most recent DSSP version, 
these results are totally scrambled, the π–helices showed behaviors equivalent to 310-helix [1]. 
The rigidity of β-sheet was confirmed, but we also show its capacity to transform into turns. 
Finally, while the dynamics between turns (with hydrogen bond) and bends (without hydrogen 
bond) have some strong similarities, they also showed differences as turns convert easily to 
helical structures while bends prefer the extended conformations.  
Analyses were similarly performed using a structural alphabet [2], namely the Protein Blocks 
(PBs) [3]. For half of the PBs, to be buried or exposed does not change at all its dynamics. The 
majority of PBs remain as their original conformation, or at least with a high frequency. Few 
PBs have a higher tendency to be more flexible. The intriguing fact is that the change from a PB 
to another one does not correspond to a simple geometrical evolution. It is more frequent to go 
to an unexpected PB than an expected one. 
To go further, a dataset of disorder protein ensembles was analyzed with the PB. Using a PB 
derived entropy index, we quantify, for the first time, continuum from rigidity to flexibility and 
finally disorder. We also highlight non-disordered regions in the ensemble of disordered 
proteins.  
These studies show the complex nature of protein dynamics and the value of their analysis at a 
local level. In addition, they show the possibility of performing these analyzes on both ordered 
and disordered proteins. 

Keywords. Structural alphabet, entropy, molecular dynamics, flexibility, secondary structure. 
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Abstract: Ensembl[1] (https://www.ensembl.org) and Ensembl Genomes[2]      
(https://ensemblgenomers.org) are systems for generating and distributing genome annotation         
such as genes, variation, regulation and comparative genomics across a large taxonomic space.             
The Ensembl annotation pipeline is capable of integrating experimental and reference data            
from multiple providers into a single integrated resource. Both software and data are made              
available without restriction via our websites, online tools platform and programmatic           
interfaces (available under an Apache 2.0 license) four times a year. Historically Ensembl             
release cycles last about three months. The increasing amount of data managed by our different               
teams has led to an increasing strain on the release cycle, regarding prospects in terms of                
number of species due in the near future. Since Ensembl’s first release, we have constantly               
improved our processes to keep up with data growth. This is getting even more important               
regarding the growth of large scale biodiversity sequencing projects all around the world. We              
currently define our release process as fully integrated (FI) processing in the sense that every               
single data we provide is available with all available related data computed before release              
(Variation, Regulation and Comparatives Genomics). To address the latest increases in data            
volume, we plan to turn our release into a partial integration (PI) process. Under PI there                
would be the concept of a minimum data release. Hence new and updated data release would                
not require the full set of related data, allowing us to release on a much faster basis, we are                   
expecting to release on a two week base, allowing updates with new data available as soon as                 
they are available. 

Keywords: Ensembl, EnsemblGenomes, Sequencing Data, Ensembl 2020 WebSite, Darwin Tree of           
Life, Vertebrates Genomes Project.  

 

Introduction  
Historically Ensembl release cycles last about three months for all our available resources. The process               

starts with the production of species assembly databases for new and updated data available and ends with                 
the release of data via various servers around the world. Comparative genomics analysis is performed on                
each species, providing cross-species resources and analysis, both at gene and sequence level to produce               
fully reconciled phylogenies of genes (both for protein coding and non-coding genes), ortholog and paralog               
prediction. For species with variation (substitutions, insertions, deletions and structural events) and            
regulation (DNase-seq, FAIRE-seq and ChIP-seq) data we create dedicated Variation [3] , Regulation [4]              
builds. The expectation that these downstream data types are made available alongside our gene sets at                
release is called full integration (FI). The increasing amount of data managed by our different analysis                
methods has led to increasing pressure on Ensembl’s release cycle, and these numbers will grow dramatically                
in the near-future with projects such as the Darwin Tree of Life (DToL) [5] and Vertebrates Genomes Project                  
(VGP) [6] . 
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Current release processing (FI) 

Currently there is an expectation that Ensembl will analyse and release all suitable data for an assembly                 
(full integration) and available to access via our APIs, databases and FTP site for it to be available in                   
Ensembl.  

Here is a simplified Ensembl release process[7] workflow:  
- Assemblies: New/updated assemblies from sequencing projects around the world are submitted to            

archives and then have genes annotated using computational methods based on experimental data.             
New species are added frequently every release cycle, and existing species may receive updates held               
in databases. These databases are then handed over to other parts of the Ensembl project to be further                  
processed.  

- Variation/Regulation/Comparative analysis data: Once a genome has been annotated, QC’d and           
released internally, other analysis methods are free to process all available genomes in order to create                
additional value on data sets. These range from our comparative genomics methods to our variation               
and regulation data builds  

- Data transformation: We then process all available data to produce a comprehensive set of flat file                
serialisations (GTF, Genbank, FASTA, amongst others) to be delivered on our FTP site. 

- Web publication: Once finished data is published via our website. This involves the handover of all                
known data sets and the transformation of a subset of data into web optimised formats.   

Release: When release is ready, an archive is created from previously published data and new dataset is made                  
available. Since data accrues as time passes, so does the load on a release resulting in longer release cycles.                   
As volumes of genomes increase, the FI model means that achieving four public releases a year is difficult to                   
achieve and must be revised to cope with growing amounts of data. 

Expected Quick Release Process 
 

Under the PI there would be the concept of a          
minimum data release. The most natural minimum       
data release would be an assembly and an annotated         
gene set, however conceivably the minimum possible       
data release is simply an unannotated assembly       
against which analysis tools such as BLAST can be         
run. PI is based on the idea that we can update data            
sets linked assemblies much more dynamically with       
downstream analyses being placed in the next       
available release window. Under this strategy we       
would by default only display assemblies with full        
integration to users, but would allow advanced users        
access to partially processed data as soon as it         
becomes available. This could mean access to gene        
sets without compara data. 

 

Future prospects 
The Quick Release Processing (QRP) release procedure, in its first incarnation, will provide access to               

genomes across the tree of life from the wealth of genome sequencing projects now available. QRP is                 
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intended to bridge the gap between our current infrastructure and our future infrastructure. A preview of this                 
future infrastructure is available from http://2020.ensembl.org. Our intention is for this new infrastructure to              
use QRP’s processing systems to create denormalised data representations suitable for consumption through             
our new programmatic and visual interfaces. As such, Ensembl will continue to support rapid release of                
emerging genomes to researchers with minimal delay through a system ensuring both consistency of              
annotation and correctness of data. 

Fundings 
Wellcome Trust [WT108749/Z/15/Z]; National Human Genome Research Institute [U41HG007823,         

2U41HG007234]. The content is solely the responsibility of the authors and does not necessarily represent               
the official views of the National Institutes of Health; Biotechnology and Biological Sciences Research              
Council [BB/N019563/1, BB/M011615/1]; Open Targets; Wellcome Trust [WT104947/Z/14/Z,        
WT200990/Z/16/Z, WT201535/Z/16/Z, WT108749/Z/15/A, WT212925/Z/18/Z]; ELIXIR: the research       
infrastructure for life-science data; This project has received funding from the European Union's Horizon              
2020 research and innovation programme under grant agreement No 733161 (MultipleMS).; ‘Save the             
Tasmanian Devil Program’; European Molecular Biology Laboratory. Funding for open access charge:            
Wellcome Trust [WT108749/Z/15/Z]. 

Conflict of interest statement. Paul Flicek is a member of the Scientific Advisory Boards of Fabric                
Genomics, Inc. and Eagle Genomics, Ltd. 

References 
1. Andrew D Yates, Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge Alvarez-Jarreta, M 

Ridwan Amode, Irina M Armean, Andrey G Azov, Ruth Bennett, Jyothish Bhai, Konstantinos Billis, Sanjay 
Boddu, José Carlos Marugán, Carla Cummins, Claire Davidson, Kamalkumar Dodiya, Reham Fatima, Astrid Gall, 
Carlos Garcia Giron, Laurent Gil, Tiago Grego, Leanne Haggerty, Erin Haskell, Thibaut Hourlier, Osagie G 
Izuogu, Sophie H Janacek, Thomas Juettemann, Mike Kay, Ilias Lavidas, Tuan Le, Diana Lemos, Jose Gonzalez 
Martinez, Thomas Maurel, Mark McDowall, Aoife McMahon, Shamika Mohanan, Benjamin Moore, Michael 
Nuhn, Denye N Oheh, Anne Parker, Andrew Parton, Mateus Patricio, Manoj Pandian Sakthivel, Ahamed Imran 
Abdul Salam, Bianca M Schmitt, Helen Schuilenburg, Dan Sheppard, Mira Sycheva, Marek Szuba, Kieron Taylor, 
Anja Thormann, Glen Threadgold, Alessandro Vullo, Brandon Walts, Andrea Winterbottom, Amonida Zadissa, 
Marc Chakiachvili, Bethany Flint, Adam Frankish, Sarah E Hunt, Garth IIsley, Myrto Kostadima, Nick Langridge, 
Jane E Loveland, Fergal J Martin, Joannella Morales, Jonathan M Mudge, Matthieu Muffato, Emily Perry, Magali 
Ruffier, Stephen J Trevanion, Fiona Cunningham, Kevin L Howe, Daniel R Zerbino, Paul Flicek, Ensembl 2020, 
Nucleic Acids Research, Volume 48, Issue D1, 08 January 2020, Pages D682–D688, 
https://doi.org/10.1093/nar/gkz966 

2. Kevin L Howe, Bruno Contreras-Moreira, Nishadi De Silva, Gareth Maslen, Wasiu Akanni, James Allen, Jorge 
Alvarez-Jarreta, Matthieu Barba, Dan M Bolser, Lahcen Cambell, Manuel Carbajo, Marc Chakiachvili, Mikkel 
Christensen, Carla Cummins, Alayne Cuzick, Paul Davis, Silvie Fexova, Astrid Gall, Nancy George, Laurent Gil, 
Parul Gupta, Kim E Hammond-Kosack, Erin Haskell, Sarah E Hunt, Pankaj Jaiswal, Sophie H Janacek, Paul J 
Kersey, Nick Langridge, Uma Maheswari, Thomas Maurel, Mark D McDowall, Ben Moore, Matthieu Muffato, 
Guy Naamati, Sushma Naithani, Andrew Olson, Irene Papatheodorou, Mateus Patricio, Michael Paulini, Helder 
Pedro, Emily Perry, Justin Preece, Marc Rosello, Matthew Russell, Vasily Sitnik, Daniel M Staines, Joshua Stein, 
Marcela K Tello-Ruiz, Stephen J Trevanion, Martin Urban, Sharon Wei, Doreen Ware, Gary Williams, Andrew D 
Yates, Paul Flicek, Ensembl Genomes 2020—enabling non-vertebrate genomic research, Nucleic Acids Research, 
Volume 48, Issue D1, 08 January 2020, Pages D689–D695, https://doi.org/10.1093/nar/gkz890 

3. Hunt S.E., McLaren W., Gil L., Thormann A., Schuilenburg H., Sheppard D., Parton A., Armean I.M., Trevanion 
S.J., Flicek P. et al.. Ensembl variation resources. Database J. Biol. Databases Curation. 2018; 
https://doi.org/10.1093/database/bay119  

4. Zerbino D.R., Wilder S.P., Johnson N., Juettemann T., Flicek P.R. The Ensembl regulatory build. Genome Biol. 
2015; 16 :56. 

5. The Darwin Tree of Life project: https://www.darwintreeoflife.org/  
6. The Vertebrate Genomes Project:  https://vertebrategenomesproject.org/  
7. The Ensembl Release Cycle: https://www.ensembl.org/info/about/release_cycle.html  

 

Paper 17

14



Automated Inference of Gene Regulatory Networks
Using Explicit Regulatory Modules
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Gene regulatory networks are a popular tool for modelling important biological phenomena. Effi-
cient identification of the causal connections between genes, their products and regulating transcrip-
tion factors, is key to understanding how defects in their function may trigger diseases. Adding more
biologically-motivated topological constraints on the network might lead to better results in network
inference. Moreover, in recent years, we have seen great improvements in mapping of specific binding
sites of many transcription factors to distinct regulatory regions. Recent gene regulatory network mod-
els use binding measurements in addition to gene expression data from perturbation experiments; but
usually only to define gene-to-gene interactions, ignoring regulatory module structure, which might
be key to a better understanding of the studied network dynamics. Eventually, current huge amount
of transcriptomic data, and exploration of all possible cis-regulatory arrangements which can lead to
the same transcriptomic response, makes manual model building, from literature, both tedious and
time-consuming [1].

In our paper, we suggest a generic method to explicitly specify possible cis-regulatory connections
in a gene regulatory network, based on transcription factor binding evidence. We have implemented
our method using the formalism of Boolean networks. Our networks explicitly define cis-regulatory
regions as additional nodes in the network, and further constraint the topology of the network using
transcription factor bindings to cis-regulatory elements. Previous Boolean networks can be turned
(“expanded”) into such networks in a simple, automated way. Automatic network inference can then
be performed on networks with putative regulatory interactions, using expression data, in order to
find regulatory functions and edges which are consistent with wet-lab results. Infered networks can
then be inspected in in silico simulations.

We use our new modelling framework in order to design a pipeline which automatically enumerates
all biological scenarii (as “cis-regulatory” Boolean models) that can explain the experimental data
provided. We suppose that the possibly multiple results obtained for a given dataset can be interpreted
as different transcription factor binding site arrangements, and that the modular structure of these
solution models allows to better understand the regulatory phenomena at play. We have tested our
method on two previously published regular Boolean models [2,1], and were able to observe that
redundant biological interactions can effectively be modelled using cis-regulatory interactions, and
that such cis-regulatory networks preserve stable states of the initial Boolean models.

This work is a proof-of-concept that current qualitative modelling frameworks can benefit from
topological biological knowledge. The fully automated method for model identification has been
implemented in Python, and the expansion algorithm in R. The method resorts to the Z3 Satisfiability
Modulo Theories (SMT) solver [3], and is similar to the RE:IN application [4].
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1 Background

Each tumor is constituted of different  cell  types, in different  proportions.  This  cell-type heterogeneity
should be  considered in cancer studies as it plays a significant role in tumor progression and response to
chemotherapy  [1].  A cost-effective  way  to  infer  the  cell-type  composition  is  to  rely  on  computational
deconvolution  methods  to  obtain  an  individual  profile  from  the  global  DNA methylation  of  surgical
specimens. Recently, several “reference-free” algorithms have been proposed to estimate tumor cell-type
heterogeneity from bulk DNA methylation samples [2,3,4], but a comparative evaluation of the performance
of these methods is still lacking.

2 Results

  First,  we used simulations to evaluate several computational pipelines based on the software packages
RefFreeEWAS [2], MeDeCom [3] and EDec [4]. We identified that accounting for confounders and feature
selection of more informative probes decrease very significantly the deconvolution error. The choice of the
number of estimated cell types was also highlighted as a critical step, and we recommended the Cattell’s rule
based on the scree plot to determine it. Once the pre-processing steps achieved, the three deconvolution
methods provided comparable results.

   Then, we compared the algorithms’ performance depending on simulations parameters, such as the inter-
sample variation of cell-type proportions or the number of samples. Based on all these results, we developed
a  benchmark  pipeline  for  the  inference  of  cell-type  proportions  and  implemented  it  in  the  R package
medepir.

     Finally, we applied this pipeline on the lung cancer DNA methylation data of The Cancer Genome Atlas,
and observed that the immune cell proportions we obtained are similar to those estimated by the reference-
based EpiDISH algorithm [5] or by the ESTIMATE algorithm [6] using RNA-seq profile.
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Abstract Chromosomes of all species studied so far display a variety of higher-order or-
ganizational features such as domains, loops, or compartments. Many of these structures
have been characterized from the genome-wide contact maps generated by chromosome con-
formation capture approaches (Hi-C, ChIA-PET,...). Indeed, DNA 3D structures translate
as distinct patterns visible on these maps. We developed Chromosight, an algorithm based
on computer vision approaches that automatically detect and quantify any type of pat-
tern in contact data. Chromosight detects 3 times as many patterns as existing programs,
while being faster and fit to any genome, including small, compact ones. Chromosight is
user-friendly and can be extended to user-provided patterns. We validated the program by
applying it to a variety of chromosomal structures found in mammals. Code and docu-
mentation: https://github.com/koszullab/chromosight

Keywords Domain borders, Genomics, Loops, Hi-C, Detection

Introduction

Proximity ligation derivatives of the chromosome conformation capture (3C) approach [1] such as
Hi-C [2] have unveiled a wide variety of chromatin 3D arrangements of potential interest regarding chro-
mosome metabolic processes. Indeed, these approaches reveal the average contact frequencies between
DNA segments within a genome, computed over hundreds of thousands of cells. These frequencies
reflect the relative spatial distances separating these regions. In all species studied so far, chromo-
somes are sub-divided into sub-Mb domains. In mammals, topologically associating domains (TADs)
are relatively stable self-interacting regions formed and maintained by the action of the structural
maintenance of chromosomes (SMC) protein complex cohesin [3,4,5,6]. TADs have been proposed
to emerge from a loop extrusion mechanism, in which cohesins would enlarge DNA loops between
two roadblocks along the chromosomes. These roadblocks are formed by the CCCTC-binding factor
(CTCF) [7]., enriched at TADs borders. A number of experimental and computational studies suggest
that TADs may serve as scaffolds for gene regulation [8] Chromatin loops connecting distant loci across
the genome (from a few kb to several Mb) are also common features of chromosome architecture and
have been detected by Hi-C along yeast metaphase [9] and mammalian interphase chromosomes [10].
In mammals, these loops frequently bridge CTCF-binding sites, at the extremities of TADs, and are
dependent on cohesin. The regulation of cohesin-dependent loops appears to be conserved from yeast
to mammals, suggesting a ubiquitous mechanism that evolved to promote different functions [9].

Most structural features can be identified by eye on a Hi-C contact map. This identification is
sometimes carried out manually, which may prove unwieldy or impractical for large or noisy datasets.
Several methods have been developed to identify specifically looping interactions in Hi-C contact maps.
For instance, diffHiC [11] looks for contact enrichments between pairs of loci. Other tools explicitly
look for loop patterns using tailored rules: HiCExplorer [12] computes statistical distributions from the
Hi-C contacts and looks for groups of outlier pixels forming neighbourhoods, while tools like HOMER
[13] or HiCCUPS [10] compare the intensity of each pixel with a surrounding region. However, most of
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these tools remain perfectible. First, they were developed to investigate loops in humans, e.g. discrete
dots positioned at relatively large distances from the main diagonal of Hi-C contact maps, and very
different from loops found so far in the smaller, more compact genomes of bacteria and fungi. Second,
they miss many loops otherwise clearly visible by eye and hence suffer from a low detection rate. Most
of these tools are also computationally intensive and require either a dedicated GPU (HiCCUPS) or
a long run-time (e.g. HOMER). Some groups have recently started to use kernel convolutions to
tackle the latter limitation. Notably, the cooltools suite (https://github.com/mirnylab/cooltools) has
implemented a ”dot finder” algorithm that uses the same surrounding regions method as HiCCUPS,
but uses kernel convolution instead of explicit comparisons to speed up operations.

Here we introduce Chromosight, a program that automatically detects generic patterns in chro-
mosome contact maps, with a specific focus on chromosomal loops and domain borders. Chromosight
is a user-friendly python package, with minimal installation requirements. It can be applied to any
contact map, independently of species, protocol or genome size. The source code is available on github
https://www.github.com/koszullab/chromosight and our implementation is readily available on
PyPi and bioconda as a standalone package. We benchmarked its precision and recall rate on sim-
ulated datasets and compared it to existing algorithms, showing it outperforms all other available
programs. It is also markedly faster than most of these. Importantly, it works well on any genome
and any pattern. The approach can easily be extended to user-defined structures visible on a contact
map, such as cohesin injection points, or centromere clustering.

Results

Presentation of the algorithm

Chromosight takes a single, whole-genome contact map as an input in cool or bedgraph2d format,
and starts by pre-processing each chromosome’s submatrix to enhance local variations in the signal
(Fig. 1a, methods). Intra-chromosomal contacts above a user-defined distance are discarded to con-
strain the analysis to relevant scales and improve performance. The core task of the Chromosight’s
algorithm consists in detecting a given template (e.g. loop or border kernel) within an image (i.e. the
Hi-C matrix). This task is known as template matching and has been commonplace for a long time in
the computer vision community [14]. Like most template matching procedures, Chromosight proceeds
in 2 steps: 1) a correlation step where each sub-image is correlated to the template and 2) a selection
step where sub-images with highest correlation values are labelled as template representations.

Convolution algorithms are often used in computer vision where images are typically dense. Hi-
C contact maps, on the other hand, are extremely sparse. Chromosight’s convolution algorithm is
therefore designed to be fast and memory efficient on sparse matrices. For selecting contiguous regions
of high correlation values, Chromosight uses connected component labelling (CCL). By converting the
thresholded correlation map into a sparse adjacency graph, Chromosight can take advantage of an
existing CCL implementation optimized for graphs to minimize both running time and memory usage.

Unlike other tools which rely on tailored scoring methods for each pattern type (e.g. Arrowhead for
TAD detection [10]), Chromosight uses a single algorithm to detect built-in (loops, borders, hairpins...)
or user-defined patterns. Regardless of the pattern, each detected instance is associated with a score
(Pearson correlation), facilitating the interpretation of the result.

We assessed the performances of Chromosight for loop detection by benchmarking it against 4
existing programs on synthetic Hi-C data (Methods). We found that Chromosight has comparable
precision (proportion of false positive calls) to state-of-the-art algorithms while having much higher
recall rates (higher proportion of true positives detected) (Fig. 1b). Moreover, Chromosight’s speed is
comparable to the fastest tools available. For instance, on a machine with a 12 threads Intel i7-8700k
CPU at 4.7GHz, Chromosight took 5 minutes and 6.5GB of RAM to perform loop detection at up to
20Mbp interaction distance on a human matrix with 249M contacts at a resolution of 10kb [15].

Chromosight can run either in the aforementioned detection mode, or in quantification mode (quan-
tify). Chromosight quantify takes an input set of coordinates and returns their Pearson coefficients
with a desired kernel. We used quantify to precisely measure the spatial scales at which cohesin loops
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Fig. 1. Chromosight algorithm workflow and benchmark. a, Matrix preprocessing involves normal-
ization balancing followed by the computation of observed / expected contacts. Only contacts between bins
separated by a user-defined maximum distance are considered. The preprocessed matrix is then convolved with
a kernel representing the pattern of interest. For each pixel of the matrix, a Pearson correlation coefficient is
computed between the kernel and the surrounding window. A threshold is applied on the coefficients and a
connected component labelling algorithm is used to separate groups of pixels (i.e. foci) with high correlation
values (Methods). For each focus, the coordinate with the highest correlation value is used as the pattern coor-
dinate. Coordinates located in poorly covered regions are discarded (Methods). b, Comparison of Chromosight
with different loop callers. Top: F1 score, Precision and Recall score assessed on labelled synthetic Hi-C data
(Methods). Higher is better. Bottom: performance of the different algorithms. Run-time and memory usage
according to maximum scanning distance and the amount of downsampled contact events, respectively. The
performance benchmark was run 5 times on data from human lymphoblastoid cell line (GM12878) Hi-C maps
[15]. Means and standard deviations (grey areas) are plotted.

act. This allows us to compute what a loop ”spectra”, i.e. loop scores for pairs of cohesin peaks
separated by increasing genomic distances (see Methods).

Detection and quantification in mammals

We applied Chromosight on published human and mouse Hi-C data generated in different labo-
ratories. First, we searched for loops, borders, and hairpins in genome-wide contact maps generated
from lymphoblastoids (GM12878) [15] (Fig 2a).

Loop detection yielded more than 18,000 occurrences (Fig 2b). The majority of the loop basis
('55%, p < 10−16, Fisher test)) fall into loci enriched in cohesin subunit Rad21, as expected[16].
Multiple loops often originate from a same basis, reflecting either an heterogeneity of structures in the
population, the formation of rosette-like structures, or both.

We then compared loop scores between wild type (WT) and mutant Hela cells where cohesin
was depleted [16]. Loop detection in WT Hela cells yields similar results as with GM12878 cells,
with 15,600 loops. The loop scores of these WT borders in cohesin-depleted contact maps show the
disappearance of the loop signal in the absence of cohesin (Fig 2c). This analysis confirms that the
loops identified by Chromosight in WT contact maps are indeed biologically relevant structures, and
not unwanted signal.

To measure more precisely the spatial distributions of cohesin loops, we computed the loop spec-
trum on pairs of cohesin peaks (Fig 2d) using Hi-C data of Hela synchronized cells released from
mitosis into G1 [17]. At the beginning of the kinetics, the spectrum is flat with no significant loop
scores. As cells progress through mitosis and re-enter G1, a loop signal clearly emerges with a peak
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at 130 kb, a distance similar in other cell types (data not shown). The loop spectra show a secondary,
weaker peak at 260 kb, suggesting a structural model with regular loop structures.

The 11,389 borders detected by Chromosight appeared enriched in CTCF deposition sites ('40%,
P< 10−16, Fisher test) [18], showing that the detection of domain borders based on pattern matching is
also relevant to capture biological features already identified with algorithms based on other approaches
(ex: segmentation [19]).

Finally, Chromosight detected 1,700 hairpin like patterns (Fig 2b) in GM12878. Interestingly,
the chromosome coordinates for this detected group are enriched in NIPBL (2 fold effect, p < 10−16,
Fisher test), a cohesin loading factor. The hairpin-like structures detected by Chromosight could
therefore be interpreted as injection points for cohesin, an hypothesis of potential interest regarding
the regulation of genome organization.

We analyzed Hi-C data from cells depleted of NIPBL to test for its implication in the detected
hairpin patterns [20]. The hairpin patterns almost disappear in this mutant (average hairpin scores
decreased from 0.40 to 0.03, P < 10−16) (Fig 2e).

Discussion

Chromosight is a fast program that detects any type of pattern in chromosome contact maps for
any genome. We have shown that it outperforms all other programs at reliably detecting a large
number of DNA loops. In addition, it allows the user to search for any type of pattern, and additional
structures could easily be added such as stripes, or patterns corresponding to large-scale structural
variants (e.g. inversions, translocations). Chromosight could also be used to facilitate the detection
of genomic misassemblies from the Hi-C signal, to help their correction and polishing [21].

Chromosight’s execution time (a few minutes for human datasets) as well as its compatibility
with widespread contact data formats (cool and bedgraph2) allows the exploratory analysis of large
amounts of contact data. It also successfully identifies DNA loops in compact genomes such as yeast
or B. subtilis (not shown). We envision that, as more species are investigated through Hi-C, and data
resolution increases, new spatial structures will be unveiled. The user-friendly, flexible approach of
Chromosight makes it a versatile tool that can easily be adapted and applied to different types of
experimental data and provides a computational and statistical framework for the discovery of new
principles governing chromosome architecture.

Methods

Simulation of Hi-C matrices

Simulated matrices were generated using a bootstrap strategy based on Hi-C data from mitotic S.
cerevisiae [9] at 2kb resolution. Three main features were extracted from the yeast contact data: the
probability of contact as a function of the genomic distance (P (s)), the positions of borders detected
by HicSeg [19] and positions of loops detected manually on chromosome 5. Positions from loops and
borders were then aggregated into pileups of 17x17 pixels. We generated 2000 simulated matrices of
289x289 pixels. A first probability map of the same dimension is generated by making a diagonal
gradient from P (s) representing the polymer matrix. For each of the 2000 generated matrices, two
additional probability maps are generated. The first by placing several occurrences of the border
pileup on the diagonal, where the distance between borders follows a normal distribution fitted on the
experimental coordinates. The second probability map is generated by adding the loop kernel 2-100
pixels away from the diagonal with the constraint that it must be aligned vertically and horizontally
with border coordinates. For each generated matrix, the product of the P(s), borders and loops
probability maps is then computed and used as a probability law to sample contact positions while
keeping the same number of reads as the experimental map.

Benchmarking

To benchmark precision, recall and F1 score, the simulated Hi-C dataset with known loop coor-
dinates were used. Each algorithm was run with a range of 60-180 parameter combinations on the
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Fig. 2. Chromosight on mammalian Hi-C contact maps. a, Magnification of human chromosome 2
contact map (bin: 10 kb, [15]). The positions of the loops, borders and hairpins detected by Chromosight are
indicated. b, Pileup (i.e. element-wise median) plots of windows centered on the detected loops, borders and
hairpins. N: number of occurrences. Bar plots on the right panel show the enrichment in Rad21, CTCF, and
NIPBL at the coordinates of loops’ bases, borders, and hairpin’s bases, respectively. c, Comparison of loop
score distributions in WT (Homo sapiens) and in mutant cells depleted in Scc1 [16] for loops detected in WT
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2000 simulated matrices and F1 score was calculated on the ensemble of results for each parameter
combination separately. For each software, scores used in the final benchmark (Fig. 1) are those from
the parameter combination that yielded the highest F1 score.

For the performance benchmark, HiCCUPS and HOMER were excluded. The former because it
runs on GPU, and the latter because it uses genomic alignments as input and is much slower. The
dataset used is a published high coverage Hi-C library [15] from human lymphoblastoid cell lines
(GM12878). To compare RAM usage across programs, this dataset was downsampled at 10, 20, 30,
40 and 50% contacts and the maximum scanning distance was set to 2Mbp. To compare CPU time,
all programs were run on the full dataset, at different maximum scanning distances, with a minimum
scanning distance of 0 and all other parameters left to default. All programs were run on a single
thread, on a Intel(R) Core(TM) i7-8700K CPU at 3.70GHz with 32GB of available RAM.

Preprocessing of Hi-C matrices

Prior to detection, Chromosight balances the whole genome matrix using the ICE algorithm [22] to
account for Hi-C associated biases. For each intrachromosomal matrix, the observed/expected contact
ratios are then computed by dividing each pixel by the mean of its diagonal. This erases the diagonal
gradient due to the power-law relationship between genomic distance and contact probability, thus
emphasizing local variations.

Calculation of Pearson coefficients

The contact map can be considered an image imgcont where the intensity of each pixel imgcont[i, j]
represents the contact probability between loci i and j of the chromosome. In that context, each pat-
tern of interest can be considered a template image imgtmp with Mtmp rows and Ntmp columns.

The correlation operation consists in sliding the template (imgtmp) over the image (imgcont) and
measuring, for each template position, the similarity between the template and its overlap in the
image. We used the Pearson correlation coefficient as a the measure of similarity between the two
images. The output of this matching procedure is an image of correlation coefficients imgcorr such
that

imgcorr[i, j] = Corr (imgcont[i : i+Mtmp, j : j +Ntmp], imgtmp) (1)

where the correlation operator Corr(·, ·) is defined as

Corr (imgX, imgY) =
cov(imgX, imgY)

std(imgX) · std(imgY)
(2)

=

∑
i

∑
j(imgX(i, j)− imgX) · (imgY(i, j)− imgY)

√∑
i

∑
j(imgX(i, j)− imgX)2 ·

√∑
i

∑
j(imgY(i, j)− imgY)2

(3)

where img = 1
M ·N

∑
i

∑
j img(i, j).

Separation of high-correlation foci

Selection is done by localizing specific local maxima within imgcorr. We proceeded as follows: first,
we discard all points (i, j) where imgcorr[i, j] < τcorr. An adjacency graph Adxd is then generated
from the d remaining points. The value of A[i, j] is a boolean indicating the (4-way) adjacency status
between the ith and jth nonzero pixels. The scipy implementation of the CCL algorithm for sparse
graphs is then used on D to label the different contiguous foci of nonzero pixels. Foci with less than
two pixels are discarded. For each focus, the pixel with the highest coefficient is determined as the
pattern coordinate.

Patterns are then filtered out if they overlap too many empty pixels or are too close from another
detected pattern. The remaining candidates in imgcorr are scanned by decreasing order of magnitude:
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every time a candidate is appended to the list of selected local maxima, all its neighboring candidates
are discarded. The proportion of empty pixels allowed and the minimum separation between two
patterns are also user defined parameters.
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Abstract The AbcRanger library provides methodologies for model choice and parameter
estimation based on fast and scalable Random Forests, tuned to handle large and/or high
dimensional datasets. The library, initially intended for the population genetics ABC
framework DIYABC, has been generalized to any ABC reference table generator.
At first, computational issues were encountered with the reference ABC-Random Forest.
Those issues have been diagnosed by us as friction between ”strict” Machine Learning
setup and ABC context, and this incited us to modify the C++ implementation of state-
of-the-art random forests, ranger, to tailor it for ABC needs: potentially ”deep” decision
trees are not stored in memory anymore, but are processed by batches in parallel.
We focused on memory and thread scalability, ease of use (minimal hyperparameter set).
R and python interfaces are provided.

Keywords Approximate Bayesian Computation, Random Forests, Model Choice, Param-
eter Estimation, C++, Python, R

1 Introduction : challenges for ABC from Population Genetics
In the context of recent advances in population genetics the number of simulated data in a ABC

context could reach over the hundred of thousands (10e5) mark. Similarly, with the advent of multi-
population summary statistics in this domain (see [1]) the number of summary statistics computed
by ABC (as covariables) could range from several hundred to tens of thousands (scenario with several
populations and combinatorial ”explosion” of multi-population statistics). Moreover, not all summary
statistics are relevant, and traditional variable selection methods still have to be tuned for each case
in an ad hoc manner. From both row and column inflation point of view, classical methods for ABC
(k-nn and local methods) doesn’t cope very well with this situation.

[2] and [3] proposed a novel approach, coined as ABC-random forest or ABC-RF, which relies on
Random Forests to provide tractable and efficient methodologies, for both model choice and parameter
estimation.

2 First building block : ABC simulations to generate the Random Forest
training database
In a Bayesian context, when the likelihood function is too complex or untractable, several likelihood-

free methods are available to approximate it, including Approximate Bayesian Computation (ABC)
[4]. Given an observed data, the basic idea of ABC is to approximate the likelihood of a parametrized
model with selected simulations, by comparing the observed data and simulated ones via computed
summary statistics. The table of summary statistics for simulated data is called the reference table
(see fig. 1). It corresponds to the so called ”training dataset” in Machine Learning terminology.

2.1 ABC-RF posterior methodologies

2.1.1 Model Choice Given an observed data, and several (parametrized) models, the purpose is to
estimate the best model to fit our data. A reference table combining summary statistics of simulated
samples (particles) is generated from each model (models are sampled according a prior distribution,
e.g. by penalizing the model complexity). A Model Choice methodology is an inference method which
takes this reference table, the observed data and infers the best fitted model for this data, along with
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¶ Compute summary
statistic µ from observed
data

Prior distribution of
model parameter θ

¸ Compute summary
statistic µi for each
simulation

· Given a certain model,
perform n simulations, each
with a parameter drawn
from the prior distribution

¹ Based on a distance
ρ(∗, ∗) and a tolerance
ε, decide whether
the summary statistic
value is close enough
to the corresponding
value on obseved data

º We store all selected
simulations (parameters
and summary statistics)
in a reference table.

Fig. 1. ABC simulations to generate the Random Forest training database

an estimated posterior probability (the probability of the model knowing the observed data), which
assesses the fitness of the predicted model.

2.1.2 Parameter Estimation Given an observed data and one parametrized model, the purpose
is to infer one or several parameters for this model given the observed data. An ABC reference table
is generated from the model. The Parameter estimation methodology is an inference method which
takes this reference table, the observed data and infers one or several parameters, along with the usual
Bayesian decorum : posterior distribution, quantiles and so on.

2.1.3 General workflow A sensible workflow is to first choose a model and then infer its parameters
(see fig. 2).

3 Second build block : Random Forests
Enter the Supervised Machine Learning (SML) realm [5]: at the beginning lies a list a pair of

input data/output data {xi, yi} from X and Y domains, called a training dataset. The objective is to
learn the best function fθ(x) parametrized by θ ∈ Θ so that a scalar loss function L : Y × Y 7→ R is
minimized on the Θ domain :

fθ = argmin
θ

L(f(xi), yi)

Random Forests are based on CART, Classification and Regression Trees, an algorithm developed
by [6].

3.1 CART

A CART is a supervised machine learning algorithm which essentially performs, recursively, a
partitioning of the predictor space into disjoint subspaces. A prediction value is assigned to each of
those subspaces (or Leaves). Once the partitioning is done, the result is a binary tree which could
predict outcomes from an input data, either classes or continuous values, by routing the data to a leaf,
whose assigned value will be used then as prediction (see fig. 3).
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¶ Compute simulations with several models, and the reference table
with model-indexed lines using a simulator (DIYAC, PyABC etc.)

· Apply Model Choice
Methodology with AbcRanger

¸ Apply Parameter Estimation
Methodology with AbcRanger

Fig. 2. Workflow with AbcRanger
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Fig. 3. An example of CART and the associated partition of the two dimensional predictor space. Each splitting
condition takes the form Xj ≤ s and the prediction at a leaf is denoted ŷ`.
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3.2 Random Forests

Bootstrapping

Training Trees

For each node
Choose the best split
over a random subset
of features

Predictor obtained
by majority vote
(for classification)
or mean
(for regression)

Fig. 4. Random Forest

Random Forests [7] are a three pronged extension of CART (see fig. 4). First it is an Ensemble
method which trains a set of CART (not just one) and predict the outcome with the majority
vote (resp. mean) of this set of trained trees for classification (resp. regression) target. Second,
bootstrapping is applied before each tree training, i.e. training data is random sampled (with
replacement). And last but not least, in a growing tree, at each node, the best split is computed on
a random subset of the features. Those three extensions have multiple benefits; the main ones
are lower variance compared to a single CART tree, due to the ensemble method, and unbiasedness,
because of the de-correlation of the trees induced by both bootstrapping and features random sampling.
Other advantages are : robustness to noise, variable importance for (almost) free, integrated cross-
validation procedure (out-of-bag samples, no need to get a validation dataset), easy parallelization,
very good scaling properties (both in rows and columns axes), and provides both classification and
regression target.

3.3 ABC Random Forest

A reference implementation of the ABC-Random Forest setup is given by abcrf [8]. We provide here
a brief description of ABC Random Forest methodologies for model choice and parameter estimation.

3.3.1 Model Choice Model Choice methodology in ABC-RF is two staged. First a classification
random forest is trained with the models (classes) as target. The trained random forest model is evalu-
ated on the observed data, getting votes and the best model to fit. Second, using the obtained random
forest from the first stage, each sample from the training dataset is labeled classified/misclassified
with the out-of-bag prediction and finally as numerical 0 or 1 for a new target. Then, a new regression
random forest is trained on the training dataset, but this time with this new target (as continuous,
non-categorical one for regression). And finally a prediction on the observed data is evaluated with
the obtained random forest, and this predicted value (between 0 and 1) is a viable estimator for the
posterior probability of the chosen model.

3.3.2 Parameter Estimation In ABC Random Forest setup, parameter estimation is limited to
one parameter at a time. Choosing a parameter θ to estimate, a regression RF is trained on a reference
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table generated only with the corresponding model and with the θ parameter values as target, forming
the training dataset. Once trained, the regression RF is evaluated on the observed data and several
outcomes are obtained, like an estimation of θ, variance, and quantiles with the help of quantile
regression forests [9]. It is worth noting that Quantile Forests are not new forests per se but an
– integrated – method to compute weights distribution of the samples, knowing an observed (or out-
of-bag) data. This distribution is then used to compute quantiles, for example. Finally a set of both
prior et posterior estimators is inferred from the RF predictions, for example a prior (resp. posterior)
pdf, obtainable via standard kernel density estimation (resp. standard weighted density estimation).

3.4 Linear augmentations

As stated in [2] (resp. [3]), for Model choice (resp. parameter estimation), there is the option –
enabled by default – to add linear combinations covariables to the existing summary statistics in the
reference table via Linear Discriminant Analysis (resp. Partial Least Squares) [5]. By refining the
”square” partitioning of the trees, this sensibly improves the prediction accuracy of Random Forests
outcomes, .

3.5 Computational limitations with ABC Random Forests reference implementation

Faced with training dataset including 100 000 lines and more than 10 000 summary statistics, abcrf
has been found growing trees over one gigabyte of memory size each. So, as typical random forests
are made of 500 or 1000 trees for prediction performance, even with state of the art RF packages like
[10], memory constraints are preventing completion of the training.

This issue has a longer reach than an simple implementation issue and exhibits a fundamental
mismatch of objectives between ”classical” supervised machine learning setup and ABC posterior
methodologies. Indeed, within ”pure” SML, a model (like a Random Forest) is first trained, and then
used to make predictions on a potentially endless source of new data; the whole model is stored by
training and loaded in memory each time for prediction purpose. However, within the ABC inference
context, the SML model is only needed for specific predictions directly on one or several observed data
sample(s) and out-of-bag samples. Moreover, the corresponding trained Random Forest is coupled to
the generated reference table (aka the training dataset), and is by no mean meant to generalize to
new data (other reference tables), let alone other model and relevant observed data: in fact storing
the forest is useless. Those remarks established the need of an adaptation of random forest algorithm
for ABC.

4 New implementation of Random Forest and ABC Random Forest

Not in memory
anymore

Growing trees in memory

To be computed

Just Finished

Accumulated valuesObserved data Computed values
for this tree

Time
Now

Fig. 5. Window of growing trees

Based on our own version of the core RF (written in C++) from the ranger package [10], our
new implementation of Random Forest for ABC, AbcRanger, solves the memory constraint issue
related to the deep trees. Leveraging the cumulative nature of the ensemble method, Random Forest
computations are now done in a joint grow/predict phase for each tree, and then optimized in order
to grow a limited batch of trees in memory. As illustrated by fig. 5), this means that grow/predict
computations for each tree is executed in a sequential –- i.e. batch-wise – order: as now tree growing
and predictions are computed in a single pass, predictions and posteriors are then stored/accumulated
and each tree is finally discarded, freeing the system memory for next growing trees. The trees of
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the currently processed batch are still computed in parallel to leverage nowadays ubiquitous multicore
architectures.

Although this doesn’t precludes the in-memory storage of the entire training dataset at once,
this way of processing avoids the in-memory storage of the whole forest at no performance cost. In
a very constrained memory environment, one should just have to lower the number of computing
threads to keep the memory of a training batch in check. A special care has also been given to the
Meinshausen’s quantiles computations, completely parallelized and typically unnoticeable on multicore
systems. Another advantage over abcrf package: methodologies are now pure C++. So, it is relatively
easy to provide wrappers/interfaces to other languages than R, like Python, with the added guarantee
that no copy of the reference table happens between the core C++ layer handling the methodologies,
and the interfaced language providing the reference table.

4.1 A toy example application with the ELFI python package

The ELFI python package [11] provides a popular and flexible ABC framework, meant to integrate
complex ABC and inferences pipelines. Inspired by the Ma(2) toy example used by original ABC
authors in [4], we used a more general Ma(q) example for model choice and parameter estimation,
fixing q = 10 in the following.

MA(q) is a time series model defined by :

xt = µ + εt −
q∑

i=1

ϑiεt−i

For identifiability purposes the parameters should verify the following condition, roots of

Q(u) = 1 −
q∑

i=1

ϑiu
i

should be strictly outside the (complex) unity disc, and this is our main prior constraint. Prior
for θq is also sampled from an uniform distribution.

Fig. 6. Example of an MA(10) model

From the generated examples of Ma(10) on a 200-length signal, sampling the prior θ10 uniformly
in the [1, 2] interval, the usual row of (partial) autocorrelation features seems to be nonconclusive (see
fig. 6) to discriminate between, for example Ma(8), Ma(10) or Ma(12).

4.1.1 Model choice: Ma(10) vs ”all” (6 ≤ q ≤ 16) An ABC pipeline has been configured
with elfi, choosing the default sampler, without rejection (option quantile fixed to 1). For 100 trials,
priors for Ma(10) are sampled and observation generated, and models to choose are from Ma(q) with
6 ≤ q ≤ 16. On fig. 7, the performance of the ABC-RF setup is illustrated.

Also, features coming from LDA linear augmentation are discriminative, see fig. 8 for one partic-
ular inference.
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Fig. 7. Model Choice weighted histogram of inferred models: 100 Ma(10) models are tried with ABC simula-
tions followed by RF Model Choice inference (Signal length : 200 points, reftables : 2000 particles each).

Fig. 8. 10 most ranked summary statistics, sorted by permutation importance. acfi, (resp. pacfi, pacf1i,
pacf2i) are i-lagged autocorrelations (resp. partial autocorrelations, 0.05 and 0.95 corresponding quantiles).

Fig. 9. Inferred posterior distributions of a MA(10) model
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4.1.2 Parameter Estimation For parameter estimation one Ma(10) is sampled and observed, and
then all parameters are inferred individually with ABC-RF methodology (whith the help of AbcRanger
python wrapper). Results are illustrated in fig. 9. All parameters of the model were nicely estimated,
and the posterior/prior distributions clearly discriminated.

5 Conclusions and perspectives
ABC-RF posterior methodologies are a clean and efficient integration of SML techniques in a

model-based approach, although the main objective is not the raw predictive power per se like in a
pure machine learning perspective, but easy to get, accurate and interpretable posteriors.

Many ideas emphasized in both posterior methodologies from [2] and [3] have strong connections
with Generalized Random Forests framework [12] we would like to explore in order to extend our
developments to other fields than population genetics.

Moreover, we intend to pursue the algorithm adaptation of Random Forests for ABC even further,
at the tree level: for a growing tree, only encountered leaves should be stored for point estimates and
final moments. Thus, the memory footprint of the trees becomes negligible, and their growing could
finally be parallelized at full scale.

Finally, by nature of Breiman’s CART, the computational bottleneck for random forests lies in the
greedy, local split procedure at each node. To alleviate this, they are promising optimizations coming
from the Gradient Boosted Trees community [13] and also some inspired by the Deep Learning one
like [14].
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For many years, geneticists focused on linkage analysis (LA) in order to detect on a given chro-
mosome a Quantitative Trait Locus, so-called QTL: a QTL is a section of the DNA that contains
one or more genes influencing a quantitative trait which is able to be measured. In this context, the
most popular statistical method was Interval Mapping (Lander and Botstein, 1989). It consists in
performing statistical tests along the genome. Using the information brought by genetic markers, the
presence of a QTL is tested at every location in the genome. Later, geneticists moved on to genome-
wide association studies (GWAS). In contrast to LA, GWAS are based on unrelated individuals and
as a result, larger sample sizes can be considered. GWAS enabled the discovery of many SNP-trait
associations in humans (e.g. age-related macular degeneration, Fritsche et al., 2016, autisum spectrum
disorder, Connolly et al., 2017). However, both approaches (LA and GWAS) suffered from the fact
that they were unable to detect QTLs with very small effects. Recall that most traits of interest are
governed by a large number of small-effect QTLs (Goddard and Hayes, 2009, Buckler et al., 2009). It
turns out that predictions based on selected SNPs could not be considered as reliable.

Today, Genomic Selection (GS), motivated by the seminal paper of Hayes et al. (2001), is an ex-
tremely popular technique in genetics. It consists in predicting breeding values of selection candidates
using a large number of genetic markers, thanks to the recent progress in molecular biology. The goal
is not to detect QTLs anymore, but to predict the future phenotype of young candidates as soon as
their DNA has been collected. GS relies on the expectation that each QTL will be highly correlated
with at least one marker (Schulz-Streeck et al., 2012). GS was first applied to animal breeding (see
Hayes et al, 2009) and GS is nowadays extensively investigated in plants. For instance, we can mention
studies on apple (Muranty et al. (2015)), eucalyptus (Tan et al. (2017)), japanese pears (Minamikawa
et al. (2018)), strawberry (Gezan et al. (2017)), banana (Nyine et al. (2018)) and coffea (Ferrao et
al. (2018)).

In GS, the quality of the prediction is evaluated according to some accuracy criteria, i.e. the cor-
relation between predicted and true values. This criteria is a key element in genetics: it plays a role in
the rate of genetic gain. Indeed, the accuracy is one component present in the breeders equation (see
for instance Lynch and Walsh, 1998). One of the most popular methods, for prediction of breeding
values, is Ridge regression. In genetics, this regression model, initially proposed by Hayes et al. (2001)
and Whittaker et al. (2000), is called random regression best linear unbiased predictor (RRBLUP) or
genomic best linear unbiased predictor (GBLUP). We focus here on some predictive aspects of Ridge
regression and present theoretical results regarding the accuracy criteria. We show the influence of the
singular values, the regularization parameter, and the projection of the signal on the space spanned by
the rows of the design matrix. On simulated data, proxies built on our theoretical results outperformed
existing proxies in GS, built on Daetwyler et al. (2008)’s seminal formula. Next, we will discuss on
how to improve the prediction, using a “modified” predictor derived from Ridge regression. Finally, a
real data analysis is proposed; it relies on the paper of Spindel et al. (2015) dealing with GS in rice.
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Abstract

The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees.
One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most
likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret
and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the
uncertainty of inferences.
We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts
(namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree
regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To
visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools.
The method is implemented in the PastML program and web server.
The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the
phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These
analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human
DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that
resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corre-
sponding to transmissions among untreated patients.

Key words: phylogenetics, ancestral character reconstruction, maximum likelihood, marginal and joint posterior
probabilities, maximum a posteriori, Brier scoring rule, simulations, Dengue, HIV, phylogeography, drug resistance
mutations.

Introduction
A central issue in biology is to recover and understand the
evolutionary history of biological entities. These may be of
different nature and scale, ranging from DNA and protein
sequences to communities, going through biological systems,
organs, strains, individuals, species, and populations. The
characteristics and evolution of these objects are measured
using a variety of “characters,” including molecular properties
(e.g., Werner et al. 2014; Bickelmann et al. 2015; Busch et al.
2016), gene contents of genomes (e.g., Iwasaki and Takagi
2007), morphological and phenotypic characteristics (e.g.,
Endress and Doyle 2009; Marazzi et al. 2012; Beaulieu et al.
2013; Sauquet et al. 2017), ecological traits (e.g., Maor et al.
2017), and geographic locations (e.g., Arbogast 2001; Wallace
et al. 2007; Lemey et al. 2009, 2014; Edwards et al. 2011; Dudas
et al. 2017; Magee et al. 2017). Ancestral character recon-
struction (ACR) is central in all these studies to trace the
origin and evolution of the character of interest. ACR relies
first on the inference of phylogenetic relationships among

the studied objects, that is, a phylogenetic tree, typically in-
ferred from DNA or protein sequences. The character state is
generally known for all (most) tips of the tree (some methods
can accommodate for unknown or ambiguous state values).
ACR is commonly used to reconstruct ancestral sequences
corresponding to specific tree nodes (typically the tree root).
ACR is also used to determine how the character of interest
has changed on the tree from the root to the tips over evo-
lutionary time, by assigning the most likely ancestral charac-
ter states to every internal node. This global reconstruction
over the whole tree describes the evolutionary history of the
character and is commonly called an “ancestral scenario,”
which is the focus of this article. Several approaches have
been proposed for ACR so far, including parsimony (Swofford
and Maddison 1987), maximum likelihood (ML; Pagel 1999;
Pupko et al. 2000; Felsenstein 2004; Ree and Smith 2008), and
Bayesian methods (Huelsenbeck and Bollback 2001; Pagel
et al. 2004).
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Glucose is an essential source of energy for the mammalian cells. Its transport to erythrocytes and
endothelial cells of the blood-brain barrier occurs as the result of the facilitative diffusion governed
by the human glucose transporter type 1 (GluT1). GluT1 deficiency and inactivating mutations are
associated with the severe central nervous system dysfunction (de Vivo disease). Understanding the
role of GluT1 point mutations as well as modulation of GluT1 activity requires detailed description
of GluT1 mechanics during glucose transport, which is the main subject of our study.

GluT1 belongs to the Major Facilitator Superfamily (MFS) of membrane transporters. According
to the generally accepted hypothesis on the alternating access mechanism, glucose transport by GluT1
appears through a cycle of major conformational changes: the protein would adopt outward facing
(open to the extracellular medium) conformation for the ligand uptake, then switch to the inward
facing (open to cytoplasm) state for the ligand release [1] and go back to the outward facing state
to accept a new ligand molecule. These key conformational transitions can be clearly distinguished
for different X-ray structures of MFS proteins using a principle component analysis on the atom
coordinates of their common transmembrane part. Thus, the plane formed by the two first principal
components (PC plane) is a valuable tool to characterize any conformation of the family members.

For today, GluT1 was resolved only in the inward facing state in the presence of detergent [2,3]. In
the current work we have explored GluT1 conformational space by running long molecular dynamics
(MD) simulations in membrane environment. We have projected the obtained conformations on the
PC plane and demonstrated that human GluT1 transporter adopts conformations distinctly separated
from those of GluT1 bacterial homologs, which means that it can potentially follow a different mecha-
nism of solute transport. We have further verified this hypothesis by running GluT1 MD simulations
in presence of glucose. According to our results, glucose transfer can occur without any prominent
transition of GluT1 conformation suggested by the alternating access mechanism hypothesis. In our
simulations, it is driven by the side chain translocation and minor rearrangement of helical segments.
We identify the main binding sites occupied by glucose molecule during its diffusion through the
protein cavity and explore its kinetic properties of transfer. The obtained model also allows us to
investigate the impact of point mutations on GluT1 mechanics and explain their role in glucose trans-
port inhibition. In conclusion, the current study clearly revisits the alternating access mechanism and
brings new insights to better understanding of GluT1 mechanics during glucose transit.
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Abstract The Exon Junction Complex (EJC) plays a central role in post-transcriptional gene
expression regulation. To characterize the binding landscape of the EJC, we applied Cross-
linking Immunoprecipitation and sequencing (CLIP-seq) protocols. However, low coverage and
reproducibility  rate  limited  the  analysis  of  individual  binding  sites  obtained  with  currently
available tools. Here, we present an exon-level detection strategy that focuses on the specificity
of EJC binding signal. We obtained statistically significant higher reproducibility rates both at
the gene and exon levels. The study of robustly detected and undetected exons confirmed the
inherent sequence bias of cross-linking. However, our data suggests that sequence bias alone
cannot explain robustly unloaded exons. We present a highly specific strategy that mines EJC
data to yield a reliable list of binding sites. This opens the door to study the link between EJC
binding  and  gene  topology  features,  and  to  perform  comparative  studies  to  elucidate  the
underlying mechanism of EJC deposition. 

Keywords RNA-binding proteins, CLIP-seq, NGS, reproducibility.

1 Introduction 

RNA binding  proteins  (RBPs)  play  central  roles  in  post-transcriptional  gene  expression  regulation
(PTGR).  In  eukaryotes,  they  are  key  elements  in  pre-mRNA  splicing,  and  mRNA  nuclear  export,
localization, storage, translation and degradation1. The Exon junction Complex (EJC) is an important node of
the PTGR network.  It is deposited around 24 nucleotides upstream of exon junctions by the spliceosome and
accompanies transcripts at different stages of their life2,3. Although many of its fundamental roles have been
described, a high-resolution, transcriptome-wide map of the EJC deposition sites is  still  lacking. This is
crucial to explain its implication in developments and tissue-specific diseases.

Cross-linking  and  Immunoprecipitation  (CLIP)  coupled
with high-throughput sequencing (CLIP-seq) aims to identify
RBP targets through purification and identification of the RNA
fragments they bind.  The study of EJC CLIP data  of HeLa
cells, published in 2012 by our lab, suggested: a) a deposition
rate  of  80%  of  exons,  directly  correlated  to  transcript
abundance, which implies that not all exon junctions of a gene
are loaded, and b) a 50% rate of deposition in non-canonical
binding  sites,  which  means  away  from  the  canonical  24
nucleotides upstream the exon junction4. However, this study
presented  limitations  in  binding  site  resolution,  and  lacked
technical replicates.

Since  this  2012  publication,  several  improvements  and
variations  of  the  CLIP  protocol  have  appeared  during  the
decade. Using single nucleotide CLIP techniques, we obtained
EJC  libraries  that  show a  sharp  enrichment  27  nucleotides
upstream of the exon junction5 (Fig. 1). Here, we develop a
data analysis strategy that makes use of this high resolution to
yield  reproducible  EJC  binding  sites.  Ultimately,  this  work
will help us gain insight into the EJC binding site landscape. 

Fig 1: Meta-exon plot comparing the
signal enrichment of EJC libraries

obtained with different CLIP protocols.
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2 Results

We aim to use  EJC CLIP data  to  obtain a  transcriptome-wide map of  binding sites.  However,   data
analysis of EJC CLIP libraries is challenging. Particularly, we struggled with low reproducibility of binding
sites when applying the high resolution peak caller PureCLIP6.  Moreover, while reproducible results are
crucial to discern specific signal from random noise, reproducibility of CLIP data is often bypassed or treated
as a secondary question in the literature. We thus developed an alternative strategy with focus on maximizing
the reproducibility of our results.

2.1 Data description

Pseudo-replicates to overcome low coverage

To study the EJC binding site landscape at  high resolution,  we applied single-nucleotide protocols to
obtain EJC CLIP libraries. Firstly, our lab generated eight meCLIP5 libraries  to quantify the percentage of
read-through events that misplace the protein cross-linking site. However, these libraries were not perfect
technical replicates and did not have sufficient coverage. Thus we decided to merge them to constitute two
meCLIP pseudo-replicates: meCLIP-1 and meCLIP-2.

Monitoring PCR duplication yields better libraries

We  incorporated  Preseq7 in  our  data  pre-processing  pipeline  to  estimate  library  complexity  from
sequencing pre-runs. This allowed us to obtain two actual EJC eCLIP replicates (eCLIP1 and eCLIP2), with
lower PCR duplication rates and higher coverage. We sequenced the new libraries twice at separate times.
Additionally,  we  generated  two  input  control  libraries  (cross-linked  RNA-fragments  prior  to
immunoprecipitation), and added to the analyses two RNA-seq libraries published by our lab 8. The table
below summarizes the data:

Library Protocol Date
Reads in coding exons
(no PCR duplicates)

meCLIP-1 meCLIP 10/2016 638636

meCLIP-2 meCLIP 10/2016 600934

eCLIP1-1 eCLIP 10/2019 2031071

eCLIP2-1 eCLIP 10/2019 8201373

eCLIP1-2 eCLIP 11/2019 2014508

eCLIP2-2 eCLIP 11/2019 8253491

input-1 eCLIP 11/2019 1182290

input-2 eCLIP 11/2019 2006825

RNA-1 RNA-seq 11/2014 45278330

RNA-2 RNA-seq 11/2014 43735087

We performed uniform sub-sampling of eCLIP2 to obtain data sets with the exact same number of reads as
eCLIP1, in order to correct the difference between eCLIP1 and eCLIP2 and yield comparable results.
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2.2 Finding signal enrichment at different levels 

Peaks: high number, low reproducibility

Initially, we studied reproducibility of EJC binding sites using peaks detected by publicly available single-
nucleotide peak caller PureCLIP. Although the number of peaks per replicate was of several thousands, we
found  that  only  18%  of  these  were  common  to  both  replicates.  From  these,  even  a  smaller  fraction
corresponded to peaks in the  canonical  region  (around 27 nucleotides upstream the exon junction).  We
concluded that the results obtained from our data were not very reproducible, despite the sound algorithm
behind PureCLIP.

These results revealed a contradiction in our data: a high specificity of aggregated data (shown as a sharp
enrichment in the meta-exon profile), but noisy and non-reproducible individual binding sites. To study the
reproducibility of our data at different levels, we established two EJC signal enrichment scores. The first one
measures EJC enrichment at the exon level, while the second measures deposition rate at the gene level.

Exon and gene scores: EJC Enrichment Score
(EES) and Loaded Fraction (LF)

To obtain the most EJC-specific signal, we decided
to focus on the canonical region of the exons. For this,
we considered a 10-nucleotide window from the 22nd
to  the  32nd  position  upstream  the  exon  junction.
Similarly,  we  defined  a  non-canonical  region  as  a
window from the 5th to  the  15th position.  The EJC
Enrichment  Score  (EES)  is  the  ratio  between  the
number of canonical  reads over non-canonical  reads.
We designated exons with EES > 2 as enriched in EJC
signal. Once we obtained enriched exons, we computed
the  EJC  Loaded  Fraction  (LF)  per  gene,  which
corresponds to the number of enriched exons divided
by the total number of exons of the longest isoform of
a gene. We applied the same strategy on input controls
and RNA-seq libraries.

Next,  we  compared  the  percentage  of  overlap  at
three  different  detection  levels:  individual  PureCLIP
peaks, enriched exons (EES > 2), and detected genes
(LF > 0) (Fig. 2). We found that the gene level is the
most  reproducible,  with  approximately  85%  of
common genes (Fig. 2c). This shows that this strategy
yields highly reproducible results from single-nucleotide EJC data, which was not the case when applying
currently available methods. 

More common exons in genes with reproducible LF values

To dig deeper into the  reproducibility of LF values, we computed pairwise similarity ratios among CLIP
libraries.  Then,  we  selected  genes  with  ratios  between  0.66  and  1.5  in  all  pairwise  comparisons  and
designated them as robust (N = 149).

Next  we computed  exon-level  Jaccard  indexes within robust  genes.  We found that  the  proportion of
common enriched exons is higher (~40%) than prior to robust gene selection (Fig. 2b-c). Thus, reproducible
LF values correlate with higher exon-level reproducibility. By prioritizing reproducibility and specificity, we
established a reliable EJC positive control.

Fig 2: Venn diagrams at different levels of
comparison between CLIP replicates: a) common

PureCLIP peaks, b) common enriched exons
(EES > 2), c) common detected genes (with at

least 1 enriched exon, LF > 0), d) common
detected exons in robust genes (genes with

similar LF values in CLIP replicates).
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2.3 CLIP-detected genes are longer and
more abundant than all expressed genes

Next,  we  aimed  to  characterize  the
population  of  robust  genes.  We  obtained
transcript abundance (RPKM) values form
the  RNA-seq  data,  and  plotted  their
distribution  in  all  expressed  genes,  in  all
CLIP detected genes (LF > 0), and in robust
genes  (Fig.  3a).  We observe  that  detected
and  robust  gene  abundance  is  slightly
skewed towards higher values compared to
expressed  genes.  Then,  we  studied  the
spliced  transcript  size  distribution,  and
found that detected and robust genes were
consistently longer than all expressed genes
(Fig. 3b). We analyzed the number of exons
per gene and the length of individual exons,
and found that  detected  and robust  genes
had  more  exons  than  expressed  genes,
while  their  median  exon  length  is
comparable (Fig. 3c-d). This shows that the
difference  in  transcript  length  is  due  to  a
higher  exon  number  rather  than  a  higher
exon size.

Interestingly,  transcript  abundance  and
exons per gene distributions do not reveal
striking differences between detected and robust genes. This suggests that our strategy selects robust genes
from  the  pool  of  CLIP-detected  genes  rather  than  favoring  particular  genes.  On  the  other  hand,  the
differences with expressed genes suggests that our strategy finds reliable CLIP signal in more abundant and
longer genes. 

2.4 Studying sequence bias to determine robustly loaded and robustly unloaded exons

One of the questions we aim to answer is whether the EJC is systematically deposited in all exons of a
transcript. The distribution LF values of CLIP detected genes suggest that on average around 20% of exons
are loaded, and that most genes have between ~12% and ~25% of loaded exons (Fig, 4a). To study EJC
loading within the robust gene population, we first determined the statistical significance of the observed
exon Jaccard values. We shuffled the position of enriched exons within each gene, then we computed the
Jaccard index of the shuffled configuration. We found that all observed Jaccard values fell outside the null
distributions  obtained  from  exon  shuffling  (Fig.  4b,  all  p-values  equal  to  zero).  This  proves  that  the
configuration of loaded/unloaded exons in a gene is not explained by random detection. We can thus affirm
that a) robustly detected exons are likely to be loaded with EJC, and b) that robustly undetected exons are
likely to be unloaded.

Fig 3: Distribution of gene features comparing all expressed
genes, CLIP detected genes (LF > 0), and robust genes. a)
The distribution of transcript abundance (log transformed

RPKM values). b) The distribution of spliced transcript sizes
(sum of exon sizes without introns). c) The distribution of
number of exons per gene (using the longest isoform form
genome annotation). d) The distribution of individual exon

sizes.
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It is known that protein-RNA cross-linking is biased towards uracil bases9.  To study the extent of the
sequence bias in our data, we analyzed the nucleotide composition of the canonical region of robust gene
exons. We defined four classes of exons: loaded (detected in all CLIP data sets), likely loaded (detected
between 5 and 7 times across data sets), not robust (detected between 1 and 4 times), and unloaded (detected
0 times). We also analyzed the canonical region of expressed exons as a background reference. We found that
robustly loaded exons had a higher thymine (T) content (uracil, U, in RNA) than exons in the other classes
(Fig. 5). Interestingly, in a window going from the 2nd to the 9th positions in the canonical region, we observe
an enrichment of T in the loaded exons, whereas in unloaded exons we observe a depletion.

This observation reveals that the robustness of loaded exon detection is highly influenced by the uracil
content in the canonical region. We created two classes of exons based on T content: high-T (exons with
more than 3 Ts, or with Ts in the 2-9 window), and low-T (exons with less than 3 Ts, and no Ts in the 2-9
window). We set up a contingency table of EJC loading (loaded/unloaded) and T-content (high-T/low-T), to
study the extent of the sequence bias:

Loading / T content High T Low T

Unloaded 199 59

Loaded 159 2

Fig 4: a) Distribution of Loaded Fraction values in all CLIP-detected genes in
eCLIP data sets and input controls. Here we show sub-samplings of eCLIP2

(marked with an S); * P < 0.05, Mann-Whitney test. b) Distribution of Jaccard
values in the shuffled exon configuration; Jaccard values between eCLIP1-1 and

eCLIP2-S1 are shown; dashed lines correspond to observed values in robust genes;
exact observed values and their corresponding p-values are shown. c) P-value

matrix for the observed Jaccard index tested against shuffled distributions across
all CLIP data set comparisons. 

Fig 5: Nucleotide occurrence in the canonical region of expressed exons (from RNA-seq detected genes);
robustly unloaded exons (detected 0 times across CLIP replicates); not robust exons (detected 1 to 4 times in
CLIP replicates); likely loaded (detected 5 to 7 times in CLIP replicates), and robustly loaded (detected in all

CLIP replicates). The occurrence of each nucleotide per position was obtained using the convert-matrix
program of RSAT10.
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We observed that 99% of loaded exons belong to the high-T class, whereas around 77% of unloaded exons
do. This observation confirms a significant impact of T-content on robust loaded exon detection (Chi-square
test P < 0.01). However, we should note that a big fraction of unloaded exons belong to the high-T fraction.
Thus, we hypothesize that for many unloaded exons, a low T content does not suffice to explain their robust
lack of detection.

3 Conclusions

1. We set up an EJC CLIP analysis pipeline focused on the specificity of the EJC signal. With this
strategy, we have overcome the lowly reproducible results obtained with currently available tools.

2. By focusing on reproducibility, we selected a highly specific EJC- positive population of robustly
detected genes.  We found a significant  and reproducible  exon-level  configuration of loaded and
unloaded exons.

3. Although robust  detection of loaded exons is  highly biased by T-content,  our data suggests that
sequence  content  does  not  fully  explain  the  lack  of  exon  detection.  Further  work  requires
establishing a statistical framework to compute the probability of observing T-enriched unloaded
exons and test this hypothesis.

4. Finally, our study on specific EJC signal reveals that its deposition occurs in a smaller number of
junctions  than  previous  estimations.  Future  comparative  studies  of  robustly  loaded  exons  will
elucidate the underlying mechanisms of EJC deposition on transcripts.
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1. LRdb and single-cell transcriptomes 

Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor interactions 

underlying cellular networks. We introduce a new, curated ligand-receptor database (LRdb) and a novel 

regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted 

ligand-receptor interactions and show that our regularized score outperforms other scoring schemes while 

controlling false positives. LRdb and the scoring system are implemented in SingleCellSignalR, an open-

access R package accessible to entry-level users and available from GitHub (Bioconductor integration 

pending). Inference results come in a variety of tabular and graphical formats such as a network view 

integrating all the intercellular interactions, complemented by the capability to explore how signaling 

downstream receptors enters each cell population intracellular pathways. Among various examples, we show 

how the ability to control false positives might unravel peculiar communication structures in tissues, e.g., 

mouse epidermis. 

2. Bulk transcriptomes 

The contribution of the tumor microenvironment (TME) to tumor progression and therapy resistance is 

substantial in most tumors. Immunotherapies have revolutionized the treatment of cancer, and antibodies 

targeting immune checkpoints or ligands thereof, e.g., PD-1/PD-L1 or CTLA-4, have demonstrated clinical 

benefit. Such therapies disrupt TME ligand-receptor interactions. 

We developed an algorithm to infer ligand-receptor interactions taking place in the TME from bulk 

transcriptomes. This algorithm integrated LRdb with Reactome pathways and was applied to salivary duct 

carcinoma (SDC), a rare and aggressive cancer. We uncovered 179 high confidence interactions, 72 of which 

were correlated with the immune system infiltrate present in the TME. We validated three interactions by 

immunofluorescence and digital imaging, and discussed further targetable interactions based on the literature 

available for other tumors. 

The Alame et al. paper provides the first description of the genomics of SDCs and shows the existence of two 

groups of tumors: immune-infiltrated and immune-poor. Besides other considerations about SDCs, the 

exploitation of LRdb and the development of a first bulk algorithm to infer cellular interactions enabled us to 

propose novel options to treat immune-infiltrated SDCs. 

3. Oral presentation 

We will discuss the importance of the microenvironment, and the principles behind LRdb construction and 

ligand-receptor scoring. Examples from the two articles as well as work in progress will illustrate the concrete 

application of ligand-receptor inference. 

Paper 119

42



ComPotts: Optimal alignment of coevolutionary models for protein
sequences

Hugo Talibart1 and François Coste1
Univ Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, 35042, Rennes, France

Corresponding author: hugo.talibart@irisa.fr

Abstract To assign structural and functional annotations to the ever increasing amount
of sequenced proteins, the main approach relies on sequence-based homology search meth-
ods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov
Models (pHMMs), which rely on significant alignments of query sequences to annotated
proteins or protein families. While powerful, these approaches do not take coevolution
between residues into account. Taking advantage of recent advances in the field of con-
tact prediction, we propose here to represent proteins by Potts models, which model direct
couplings between positions in addition to positional composition. Due to the presence of
non-local dependencies, aligning two Potts models is computationally hard. To tackle this
task, we introduce an Integer Linear Programming formulation of the problem and present
ComPotts, an implementation able to compute the optimal alignment of two Potts models
representing proteins in tractable time. A first experimentation on 59 low sequence identity
pairwise alignments, extracted from 3 reference alignments from sisyphus and BaliBase3
databases, shows that ComPotts finds better alignments than the other tested methods in
the majority of these cases.

Keywords Protein, sequence alignment, coevolution, Direct Coupling Analysis

1 Introduction
Thanks to sequencing technologies, the number of available protein sequences has considerably

increased in the past years, but their functional and structural annotation remains a bottleneck. This
task is thus classically performed in silico by scoring the alignment of new sequences to well-annotated
homologs. One of the best-known method is BLAST[1], which performs pairwise sequence alignments.
The main tools for homology search use now Profile Hidden Markov Models (pHMMs), which model
position-specific composition, insertion and deletion probabilities of families of homologous proteins.
Two well-known software packages using pHMMs are widely used today: HMMER[2] aligns sequences
to pHMMs and HH-suite[3] takes it further by aligning pHMMs to pHMMs.

Despite their solid performance, pHMMs are innerly limited by their positional nature. Yet, it is
well-known that residues that are distant in the sequence can interact and co-evolve, e.g. due to their
spatial proximity, resulting in correlated positions (see for instance [4]).

There have been a few attempts to make use of long-distance information. Menke, Berger and
Cowen introduced a Markov Random Field (MRF) approach where MRFs generalize pHMMs by
allowing dependencies between paired residues in β-strands to recognize proteins that fold into β-
structural motifs[5]. Their MRFs are trained on multiple structure alignments. Simplified models[6]
and heuristics[7] have been proposed to speed up the process. While these methods outperform
HMMER[2] in propeller fold prediction, they are limited to sequence-MRF alignment on β-strand
motifs with available structures. Xu et al.[8] proposed a more general method, MRFalign, which
performs MRF-MRF alignments using probabilities estimated by neural networks from amino acid
frequencies and mutual information. Unlike SMURF, MRFalign allows dependencies between all
positions and MRFs are built on multiple sequence alignments. MRFalign showed better alignment
precision and recall than HHalign and HMMER on a dataset of 60K non-redundant SCOP70 protein
pairs with less than 40% identity with respect to reference structural alignments made by DeepAlign[9],
showing the potential of using long-distance information in protein sequence alignment.
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Meanwhile, another type of MRF led to a breakthrough in the field of contact prediction[10]: the
Potts model. This model was brought forward by Direct Coupling Analysis[11], a statistical method to
extract direct correlations from multiple sequence alignments. Once inferred on a MSA, a Potts model’s
nodes represent positional conservation, and its edges represent direct couplings between positions in
the MSA. Unlike mutual information which also captures indirect correlations between positions, Potts
models are global models capturing the collective effects of entire networks of correlations through
their coupling parameters[12], thus tackling indirect effects and making them a relevant means of
predicting interactions between residues. Beyond contact prediction, the positional and the direct
coupling information captured by Potts model’s parameters might also be valuable in the context of
protein homology search. The idea of using Potts models for this purpose was proposed last year at
the same workshop by Muntoni and Weigt[13], who propose to align sequences to Potts models, and
by us[14] with the introduction of ComPotts, our method to align Potts models to Potts models.

In this paper, we fully describe ComPotts and focus on its performances in terms of alignment
quality. In the following sections, we explain our choices for Potts model inference and we describe
our method for aligning them, which builds on the work of Wohlers, Andonov, Malod-Dognin and
Klau[15,16,17] to propose an Integer Linear Programming formulation for this problem, with an
adequate scoring function. We assess the quality of ComPotts’ alignments with respect to 59 ref-
erence pairwise alignments extracted from sisyphus[18] and BaliBase3[19] databases. On these first
experiments, computation time was tractable and ComPotts found better alignments than its main
competitors: BLAST, HHalign (which is HHblits’ alignment method) and MRFalign.

2 Methods
In this section, we describe our approach to align two Potts models. We start with a short summary

of Potts models notations and then we explain the choices we made for the inference of Potts models.
Then, we introduce our formulation of the alignment problem as an Integer Linear Programming
problem, using notations from [20].

2.1 Inference of Potts models

Potts models are discrete instances of pairwise Markov Random Fields which originate from sta-
tistical physics. They generalize Ising models by describing interacting spins on a crystalline lattice
with a finite alphabet. In the paper introducing Direct Coupling Analysis[11], Weigt et al. came up
with the idea of applying them to proteins: inferred on a multiple sequence alignment, a Potts Model
could then be used to predict contacts between residues.

A Potts model on protein sequences can be defined as follows:
Let S be a multiple sequence alignment (MSA) of length L over an alphabet Σ of length q (here

we use the amino acid alphabet, which is of length q = 20). A Potts model for S is a statistical model
defining a probability distribution over the set ΣL of all sequences of length L which complies to
the maximum-entropy principle and whose single and double marginal probabilities are the empirical
frequencies of the MSA. Formally, denoting fi(a) the frequency of letter a at position i in the MSA S
and fij(a, b) the frequency of a and b together at positions i and j in S, a Potts model for S satisfies:

∀i = 1, · · · , L,
∑

x∈ΣL : xi=a

P(x1, · · · , xL) = fi(a)

∀i = 1, · · · , L,∀j = 1, · · · , L,
∑

x∈ΣL : xi=a,xj=b

P(x1, · · · , xL) = fij(a, b)

and defines a Boltzmann distribution on ΣL with:

P(x1, · · · , xL|v, w) = 1
Z

exp




L∑

i=1
vi(xi) +

L−1∑

i=1

L∑

j=i+1
wij(xi, xj)
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where:

— Z is a normalization constant : Z =
∑

y∈ΣL

exp




L∑

i=1
vi(yi) +

L−1∑

i=1

L∑

j=i+1
wij(yi, yj)




— {vi}i=1,··· ,L are positional parameters termed fields. Each vi is a real vector of length q where
vi(a) is a weight related to the propensity of letter a to be found at position i.

— {wij}i,j=1,··· ,L are pairwise couplings. Each wij is a q × q real weight matrix where wij(a, b)
quantifies the tendency of the letters a and b to co-occur at positions i and j.

The value H(x) = −
(∑L

i=1 vi(xi) +
∑L−1

i=1
∑L

j=i+1wij(xi, xj)
)

is called Hamiltonian.

In theory, one could infer a Potts model from a MSA S by likelihood maximization, i.e. by
finding the positional parameters v and coupling parameters w that maximize P(S|v, w). In practice,
however, this would require the computation of the normalization constant Z at each step, which
is computationally intractable. Among the several approximate inference methods that have been
proposed [21,22,23,24,12], we opted for pseudo-likelihood maximization since it was proven to be a
consistent estimator in the limit of infinite data [25,26] within reasonable time. Furthermore, since
our goal is to align Potts models, we need the inferrence to be geared towards similar models for
similar MSAs, which is not what inference methods were initially designed for. In an effort towards
inferring canonical Potts models, we chose to use CCMpredPy[27], a recent Python-based version of
CCMpred[28] which, instead of using the standard L2 regularization prior R(v, w) = λv ‖v‖22+λw ‖w‖22,
uses a smarter prior on v: R(v, w) = λv ‖v − v∗‖22 + λw ‖w‖22 where v∗ obeys exp(v∗i (a))∑q

b=1 exp(v∗i (b)) = fi(a)
which yields the correct probability model if no columns are coupled, i.e. P(x|v, w) =

∏L
i=1 P(xi). Our

intuition is that positional parameters should explain the MSA as much as possible and only necessary
couplings should be added.

2.2 Alignment of Potts models

We introduce here our method for aligning two Potts models. We start by describing the function
we designed to score a given alignment, then we add the constraints that make the alignment proper
by embedding it in an Integer Linear Programming formulation, following Wohlers et al.[17], allowing
us to use their efficient solver for the optimization.

vA1 vA2 vA3 vA4

vB1 vB2 vB3 vB4

wA
12 wA

23 wA
34

wA
13 wA

24

wA
14

wB
12 wB

23 wB
34

wB
13 wB

24

wB
14

A

B

Fig. 1. Illustration of the alignment of two Potts models A and B.
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2.2.1 Scoring an alignment We want the alignment score of two Potts models A and B to
maximize the similarity between aligned fields and aligned couplings.

Formally, we want to find the binary variables xik and yikjl, where xik = 1 iff node i of Potts model
A is aligned with node k of Potts Model B and yikjl = 1 iff edge (i, j) of Potts model A is aligned with

edge (k, l) of Potts model B, such that:
LA∑

i=1

LB∑

k=1
sv(vAi , vBk )xik +

LA−1∑

i=1

LA∑

j=i+1

LB−1∑

k=1

LB∑

l=k+1
sw(wA

ij , w
B
kl)yikjl

is maximized, where sv(vAi , vBk ) and sw(wA
ij , w

B
kl) are similarity scores between positional parameters

vAi and vBk and coupling parameters wA
ij and wB

kl.

To score the similarity sv(vAi , vBk ) between positional parameters vAi and vBk we use the scalar
product :

sv(vAi , vBk ) = 〈vAi , vBk 〉 =
q∑

a=1
vAi (a)vBk (a)

And to score the similarity sw(wA
ij , w

B
kl) between coupling parameters wA

ij and wB
kl we use the

Frobenius inner product, which is the natural extension of scalar product to matrices :

sw(wA
ij , w

B
kl) = 〈wA

ij , w
B
kl〉 =

q∑

a=1

q∑

b=1
wA
ij(a, b)wB

kl(a, b)

This scoring function can be seen as a natural extension of the opposite of the Hamiltonian of a

sequence x, since −H(x|v, w) =
L∑

i=1
vi(xi) +

L−1∑

i=1

L∑

j=i+1
wij(xi, xj) =

L∑

i=1
〈vi, exi〉+

L−1∑

i=1

L∑

j=i+1
〈wij , exixj 〉

where : — exi is the vector defined by ∀a ∈ [1..q], exi(a) = δ(a, xi)
— exixj is the matrix defined by ∀(a, b) ∈ [1..q]2, exixj (a, b) = δ(a, xi)δ(b, xj)

2.2.2 Optimizing the score with respect to constraints Naturally, the scoring function should
be maximized with respect to constraints ensuring that the alignment is proper. In that perspective,
we build on the work of Wohlers et al.[17], initially dedicated to protein structure alignment, to propose
an Integer Linear Programming formulation for the Potts model alignment problem.

We remind first the constraints for a proper alignment following [20].
First, we need the definition of alignment graph. For A and B two Potts Models of lengths LA and

LB, the alignment graph G is a LA × LB grid graph where rows (from bottom to top) represent the
nodes of A and columns (from left to right) represent the nodes of B. A node i.k in the alignment
graph indicates the alignment of node i from Potts model A and node k from Potts model B.

Every proper alignment of two Potts model is described by a strictly increasing path in this align-
ment graph, which is defined as a subset {i1.k1, i2.k2, · · · , in.kn} of alignment graph nodes that can
be ordered such that each node is strictly larger than the previous one, i.e. i1 < i2 < · · · < in and
k1 < k2 < · · · < kn.

To specify the constraints of the ILP, they defined sets of mutually contradicting nodes, called
decreasing paths. A decreasing path is a set {i1.k1, i2.k2, · · · , in.kn} of alignment graph nodes for
which i1 ≥ i2 ≥ · · · ≥ in and k1 ≤ k2 ≤ · · · ≤ kn holds. The set of all decreasing paths is denoted C.

We also give notations for the left and right neighborhood of a node : let i.k be a node in the
alignment graph and V +

i.k (resp. V −i.k) denote the set of couples that are strictly larger (resp. smaller)
than i.k, e.g. V +

i.k = {(j, l) | (j > i) ∧ (l > k)} and V −i.k = {(j, l) | (j < i) ∧ (l < k)} and let C+
i.k (resp.

C−i.k) denote the set of all decreasing paths in V +
i.k (resp. V −i.k).

Given the notations above, with A (resp. B) a Potts Model of length LA (resp. LB) with parame-
ters vA and wA (resp vB and wB), aligning A and B can be formulated as the following Integer Linear
Programming problem:
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max
x,y

LA∑

i=1

LB∑

k=1
sv(vAi , vBk )xik +

LA−1∑

i=1

LA∑

j=i+1

LB−1∑

k=1

LB∑

l=k+1
sw(wA

ij , w
B
kl)yikjl (1)

s.t. xik ≥
∑

j.l∈C
yikjl ∀C ∈ C+

i.k, i ∈ [1..LA − 1], k ∈ [1..LB − 1] (2)

xik ≥
∑

j.l∈C
yjlik ∀C ∈ C−i.k, i ∈ [2..LA], k ∈ [2..LB] (3)

xik ≤ 1 +
∑

j.l∈C
(yikjl − xjl) ∀C ∈ C+

i.k, i ∈ [1..LA − 1], k ∈ [1..LB − 1] (4)

∑

i.k∈C
xik ≤ 1 ∀C ∈ C (5)

y ≥ 0 (6)
x binary (7)

As in [17], an affine gap cost function can be added to the score function to account for insertions
and deletions in the sequences.

3 Results
We implemented this ILP formulation in a program, ComPotts, embedding the solver from [17].

We assessed the performances of ComPotts in terms of alignment precision and recall with respect to
a set of 59 pairwise reference alignments. For each sequence, a Potts model was inferred on a multiple
sequence alignment of close homologs retrieved by HHblits.

3.1 Data
We extracted 59 reference pairwise sequence alignments from 3 reference multiple sequence align-

ments from sisyphus[18] and BaliBase3[19] with a particularly low sequence identity. To focus on
sequences with coevolution information, we considered only sequences with at least 1000 close ho-
mologs (see next section). We also discarded sequences with more than 200 amino acids for memory
considerations with respect to CCMpredPy. Reference alignments are summed up in table 3.1

Alignment ID Database % identity Selected sequences
AL00049879 sisyphus 11.7 1g6gA, 1gxcA, 1lgqA, 1mzkA, 1r21A, uhtA, 1ujxA, 1wlnA, 2cswA, 2fezA, 2g1lA
AL00055723 sisyphus 6 1tu1A, 1v2bB

BB11022 BB3 11.3 1au7, 1neq, 1r69

Tab. 1. Reference multiple alignments used in our experiment and selected sequences extracted.

3.2 Alignment experiment
3.2.1 Potts model inference For each sequence, we built a MSA of its close homologs by run-
ning HHblits[3] v3.0.3 on Uniclust30[29] (version 08/2018) with parameters recommended in [30] for
CCMpred: -maxfilt 100000 -realign_max 100000 -all -B 100000 -Z 100000 -n 3 -e 0.001
which we then filtered at 80% identity using HHfilter, and took the first 1000 sequences. If the MSA
had less than 1000 sequences we removed it from the experiment. This MSA was then used to train a
Potts model with CCMpredPy using default parameters except for the w regularization factor coeffi-
cient (we set it to 30, which we empirically found to result in ‖v‖22 ' 1

2 ‖w‖
2
2, in other words making

v and w scores commensurable) and the uniform pseudo-counts count on the v (we set it to 1000 to
have as many pseudo-counts as the number of sequences in the alignment in order to enhance stronger
conservation signal and limit excessive similarity scores due to missing the same rare residues).

3.2.2 Potts model alignment We ran ComPotts with a gap open cost of 8 and no gap extend
cost, which we found empirically to yield the best alignments in previous experiments. To speed up
the computations, we decided to stop the optimization when 2(UB−LB)

s(A,A)+s(B,B) < 0.005 with UB and LB
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the current upper and lower bounds of the Lagrangian optimization, since we realized in preliminary
experiments that in practice it gave the same alignments as the optimal ones in significantly less time.

3.3 Alignment quality assessment

We compared each resulting alignment with the reference pairwise alignment extracted from
the multiple sequence alignment, considering the alignment precision with the Modeler score[31]
# correctly aligned columns
# columns in test alignment and the alignment recall with the TC score[32] # correctly aligned columns

# columns in ref alignment , com-
puted using Edgar’s qscore program[33] v2.1.

To compare our results, we ran HHalign v3.0.3 to align HMMs built on the MSAs outputted by
HHblits, MRFalign v0.90 to align MRFs it built from the sequences, both with default options, and
BLASTp v2.9.0+ without E-value cutoff. As a control, we also ran Matt v1.00 on the corresponding
PDB structures. Results are summarized in figure 2. Note that Matt failed to run 3 of the alignments.

Fig. 2. TC score (alignment recall) and Modeler score (alignment precision) for all 59 alignments.

BLAST is unquestionably outperformed by all other tools on this set. 10 out of the 59 sequence
pairs could not be aligned (not hit was found) and, on 22 of the alignments it performed, BLAST had
both a recall (TC score) and a precision (Modeler score) of 0. Its average TC score is 0.2694 and its
average Modeler score is 0.4357, which is about half the average scores of the other methods. BLAST
has a better precision on some alignments, most of the time because its alignments are smaller, which
results in a rather low recall, except for some alignments which seem to be quite easy for everyone,
such as 1r21A and 2fezA.

All methods seem to struggle with the alignment of 1au7 and 1neq: HHalign’s precision skyrockets
to 1.0, but at the cost of a recall of 0.47, while ComPotts and MRFalign yield their worst scores, with
respective recalls of 0.31 and 0.65 and respective precisions of 0.15 and 0.35.

On average, ComPotts’ alignments have a better recall than all compared tools including Matt
with 0.758, versus 0.670 for HHalign, 0.713 for MRFalign, and 0.749 for Matt, outperforming HHalign
most of the time – in 52 out of the 59 alignments – and MRFalign in 39 alignments out of the 59,
while still having a slightly better precision than all other sequence-based tools with 0.847 while
HHalign’s is 0.826 and MRFalign’s is 0.822, outperforming HHalign in 46 alignments out of the 59 and
MRFalign in 30 alignments. Matt has the best precision on average with 0.872. Overall, ComPotts
has an average F1 score (2×precision×recall

precision+recall ) of 0.800, versus 0.740 for HHalign and 0.763 for MRFalign,
yielding better alignments than HHalign in 52 cases and better than MRFalign in 39 cases. For as-
yet-unknown reasons though, our scores for the alignment of 1au7 and 1r69 are remarkably lower than
our competitors.
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3.4 Computation time considerations
We examined the computation times of ComPotts, HHalign and MRFalign, considering only the

time they took to align the models and not the time needed to build the models. Not surprisingly,
ComPotts is significantly slower than HHalign and MRFalign. This is explained by the fact that
HHalign only performs 1D alignment, and MRFalign uses a heuristic to compute the alignment,
whereas ComPotts uses an exact algorithm. Aligning two sequences took between 37 seconds (for two
models with 75 and 63 positions) and 14.49 minutes (for two models with 144 and 151 positions),
with an average of 3.33 minutes on a Debian9 virtual machine with 4 vCPUs and 8GB of RAM,
whereas HHalign yields a solution in less than 4 seconds and MRFalign in less than 0.20 seconds. It
is worth noting that, although the computation time is significantly higher than its competitors, the
solver yields an exact solution in tractable time, even though this problem is NP-complete[34]. In this
experiment, the computation time seems to be dominated by the computation of all the sw scores,
which is quadratic in the number of pairs of edges.

4 Conclusion
We described ComPotts, our ILP-based method for Potts model-Potts model alignment which can

yield the exact solution in tractable time. We reported encouraging results on first experiments where
ComPotts often yields better alignments than its two main competitors, HHalign and MRFalign,
with respect to a set of 59 low sequence identity reference pairwise alignments. These initial results
suggest that direct coupling information can improve protein sequence alignment and might improve
sequence-based homology search as well. We still have to see whether the score yielded by ComPotts
has more discriminatory power than other methods and enables to better distinguish homologous from
non-homologous proteins.
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The standardization, portability and reproducibility of analysis pipelines are key issues within
the bioinformatics community. Most bioinformatics pipelines are designed for use on-premises; as
a result, the associated software dependencies and execution logic are likely to be tightly coupled
with proprietary computing environments. This can make it difficult or even impossible for others
to reproduce the ensuing results, which is a fundamental requirement for the validation of scientific
findings.

Here, we introduce the nf-core framework as a means for the development of collaborative, peer-
reviewed, best-practice analysis pipelines. All nf-core pipelines are written in Nextflow and so inherit
the ability to be executed on most computational infrastructures, as well as having native support
for container technologies such as Docker and Singularity. The nf-core community has developed a
suite of tools that automate pipeline creation, testing, deployment and synchronization. Our goal is to
provide a framework for high-quality bioinformatics pipelines that can be used across all institutions
and research facilities.

As the usage of workflow management tools spreads, an increasing number of tertiary tools are
tying into the ecosystem. The nf-core analysis pipelines are at the forefront of this, collaborating with
initiatives such as bio.tools and the GA4GH-compliant Dockstore, as well as having plans to work
together with the Biocontainers project to further simplify software packaging. The primary portal to
the nf-core community is its website https://nf-co.re, which lists available analysis pipelines, user-
and developer-centric documentation, and tutorials, as well as usage and contributor statistics.

All source code the nf-core framework and all nf-core pipelines is publicly available on GitHub
under the nf-core organization https://github.com/nf-core/ and released under the MIT license.
Where applicable, Zenodo DOIs are available on the respective pipeline repositories.

We hope to welcome more contributors and pipelines to the nf-core community to build on the
solid foundation that has already been established.
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38043, Grenoble, France

Corresponding author: wesley.delage@inria.fr

Abstract Since 2009, numerous tools have been developed to detect structural variants
using short read technologies. Insertions are one of the hardest type to discover and are
drastically underrepresented in gold standard variant call sets. The advent of long read
technologies has completely changed the situation. In 2019, two independent cross tech-
nologies studies have published the most complete variant call sets with sequence resolved
insertions in human individuals. Among the reported insertions, only 17% could be dis-
covered with short-read based tools. In this work, we performed an in-depth analysis on
one of these unprecedented insertion call sets, in order to investigate the causes of such
failures. We have first established a precise classification of insertion variants according to
three different layers of characterization: the nature of the inserted sequence, the genomics
context of the insertion site and the breakpoints junction complexity. Because these levels
are intertwined, we used simulations to characterize the impact of each complexity factor.
Most reported insertions exhibited characteristics that may interfere with their discovery:
56% were tandem repeat expansions, 25% contained homology larger than 20 bp within
their breakpoints junctions and 64% were located in simple repeats. Consequently, the re-
call of short-read based variant callers was significantly lower for such insertions (6% vs
48% for mobile element and novel insertions). Simulations showed that the most impact-
ing factor on the discovery rate was the insertion type rather than the genomics context,
and that the different factors of insertion complexities were handled differently depending
on the chosen tool.

Keywords short reads, variant calling, structural variants, insertions

1 Introduction

Structural variants (SVs) are defined as a fragment of DNA of at least 50 bp that differs between
two individuals[1]. SV are categorized by type : deletion (DEL) for a loss of a fragment, insertion (INS)
for a gain of a fragment, inversion for a reversion of a fragment (INV) and translocation (TRANS)
for moving a fragment to another position in the genome. Such variations in the genome sequence
may have important functional impacts on the organism and SVs are commonly associated to human
genetic diseases or disorders [2].

The classical approach to call SVs from Whole Genome sequencing (WGS) with short reads relies
on a first mapping step to a reference genome. Then SV callers look for atypical mapping signals, such
as discordant read pairs, clipped reads or abnormal read depth, to identify putative SV breakpoints
along the reference genome [3,4]. More than 70 SV callers have been developed up to date and several
benchmarks have highlighted the low level of agreement between the different methods, demonstrating
that SV detection using short reads sequencing remains challenging [5]. Indeed the size of the reads
is small compared to the target event size and the detection is mainly based on alignments which
may produce artefacts[6]. In particular, insertions are one of the most difficult SV types to call.
Because the inserted sequence is absent from the reference genome, or at least at the given locus of
insertion, calling such variants and resolving the exact inserted sequence require trickier approaches
such as de novo or local assembly [7,8]. This increased difficulty is well exemplified by the dramatic
under-representation of such SV type in usual reference databases or standard variant call sets such
as dbVar.
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Recently, the commercialization of novel long reads technologies has completely changed the sit-
uation, and insertion variants are finally being discovered and referenced in human populations[9].
Thanks to several international efforts, some gold standard call sets have been produced in 2019,
referencing tens of thousands of insertions in a given human individual [10,11]. Among the reported
insertions by Chaisson et al, a great majority (83 %) could not be discovered by any of the tested
short-read based tools. This result of discovery rate below 17 % is drastically different from the an-
nounced performances of insertion callers when evaluated on simulated datasets [12]. Indeed, Chaisson
et al showed that 59 % of insertion variants are found in a tandem repeat context, highlighting the fact
that most real insertion variants in human individuals are probably not ”simple” sequences inserted
in ”easy” genomic contexts. However, their analysis went no further in order to precisely identify the
actual features of insertion events that make them so difficult to be discovered by short read data.

In this work, we performed an in-depth analysis of this unprecedented insertion call set, in order
to investigate the causes of short read based caller failures. We have first established a precise classi-
fication of insertion variants according to three different layers of characterization: the nature of the
inserted sequence, the genomic context of the insertion site and the breakpoint junction complexity.
Because these levels are intertwined, we used simulations to characterize the impact of each complexity
factor on the discovery rate of several SV callers, accounting for the different types of methodological
approaches.

2 Results

2.1 In-depth analysis of an exhaustive insertion variant call set

In this work, we first aimed at precisely characterizing an exhaustive set of insertion variants present
in a given human individual. We based our study on a recently published SV call set published by
Chaisson and colleagues in 2019[10]. Using an extensive sequencing dataset, combining several different
sequencing technologies and methodological approaches (short, linked and long reads, mapping-based
and assembly-based SV calling), three human trios were thoroughly analysed to establish exhaustive
and gold standard SV call sets. We focused our study on the individual NA19240, son of the so-called
Yoruban (YRI) Nigerian trio, whose SV call set contains 15,693 insertions greater than 50 bp.

We have established a precise classification of these insertion variants according to three different
layers of characterization: the nature of the inserted sequence, the genomic context of the insertion
site and the breakpoint junction complexity.

Insertion sub-types. Insertion variants can be classified in different sub-types according to the
nature of the inserted sequence. Whereas only 3 insertion categories were distinguished in the original
publication, namely tandem repeats, mobile element (ME) insertions and complex ones for all the
other types, we chose to refine this classification in six insertion sub-types, illustrated in Figure 1. A
classical subdivision consists in opposing novel sequence to duplicative insertions. In the first case, the
inserted sequence is completely absent in the reference genome, whereas in the second, the inserted
sequence has one or several homologous copies elsewhere in the genome. Among duplications, mobile
element insertions are a very specific sub-type and are defined based on the homology of the inserted
sequence with an already known mobile element. Then, several sub-types of duplicative insertions
are then defined according to the location or amount of the inserted sequence copies in the reference
genome. We therefore distinguish tandem duplications, for which at least one copy of the inserted
sequence is adjacent to the insertion site, from dispersed duplications, for which its copies can be
located anywhere else in the genome. Among tandem duplications, we defined a specific sub-type
called tandem repeats, where the inserted sequence itself is composed of multiple tandem repetitions
of a seed motif. Mobile elements (ME) are characterized by very high copy numbers in the genome
(typically greater than 500), other dispersed duplication types were then required to have a copy
number lower than 50, in order not to be confounded with potential MEs. Finally, a sub-type of
dispersed duplications is a segmental duplication, that must be larger than 1kb and share more than
90 % of sequence identity with at least one copy, following previous definitions [2].
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Fig. 1. Decision tree used to classify insertion variants in six insertion sub-types.

In order to classify the insertion call set, all inserted sequences were aligned against the human
reference genome, a mobile element database and were scanned for tandem repeats (see Material and
Methods). We used a minimal sequence coverage threshold to annotate each insertion to an insertion
sub-type according to the decision tree described in Figure 1. We set the threshold to 80% for our
analysis to ensure a good compromise between specificity and quantity of annotated insertions in all
sub-types. For instance, an insertion is classified as a novel sequence insertion if more than 80 % of
its inserted sequence is not covered by any alignment with the reference genome nor with the ME
reference sequences, nor contains tandem repeats. Insertions that does not meet the 80 % coverage
requirement to be annotated as one of the previous sub-types are qualified as unassigned insertions.

With a threshold set at 80%, 90% of insertions could be assigned to a given type. Among the
15,693 insertions, 56% were annotated as tandem repeats, 16 % as mobile elements, 7 % as tandem
duplications, 5 % as novel sequences, 6 % as dispersed duplications and 1% as segmental duplications
(Figure 2). Compared to the classification of Chaisson et al, the proportions of tandem repeats (57%
vs 56%) and mobile elements (23% vs 16%) were very similar. The difference in mobile element
proportions represent mainly insertions that are unassigned in our annotation, suggesting that our
classification is more conservative. Interestingly, 77 % of their complex insertions were more precisely
classified in one of our six sub-types, with mainly 3 sub-types being roughly equally involved: novel
sequences, tandem and dispersed duplications. Short read based SV callers used in the original study
were able to detect 17 % of these insertions, mainly represented by MEs. This short-read recall was
highly variable with respect to the insertion type: ME and novel sequence insertions showed the best
recalls (49 and 45 % respectively), whereas other types were all below 11 %. In particular, tandem
repeats appeared to be a very hard insertion type to discover (recall of 5 %), although it represents
most of the insertion variation in a human genome.

Characterization of insertion locations in the genome. We then characterized the inser-
tions based on the genomic context of their insertion site. We investigated in particular genomic
features that can make read mapping and SV calling difficult, such as the repetitive content. A
strong over-representation was found in regions annotated as simple repeats, with 64% of the inser-
tions located in these regions that only represent 1.2 % of the genome. As expected, 93 % of tandem
repeats were found in simple repeat regions, revealing expansions of already known sites to be highly
repeated. We also observed most of the duplications, tandem (72 %) or dispersed (58 %) in these
regions. Conversely, 68 % of novel sequence insertions and 56 % of mobile element insertions were
located in non repeated regions (Figure 2). We did not find a higher rate of insertions among exon, in-
tron or intergenic regions compared to their distribution along the genome. Compared to GC content
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variation along the genome, insertions showed an under-representation in regions with GC content
lower than 41% (20 % vs 29% of the genome content) and an over-representation in regions with GC
content higher than 46% (17 % vs 7% of the genome content). Novel sequence and mobile element
insertions showed to be located in lower GC content regions (median lower than 40 %) than tandem
and dispersed duplications, and tandem repeats (median greater than 43%).

(a) (b)

Fig. 2. Dispersion of insertion sub-types according to the repeat content of their insertion
site. (a) overview of the dispersion, (b) zoom-in for class counts below 2,000.

Junctional homology. Junctional homology is defined as a DNA sequence that has two identical
or nearly identical copies at the junctions of the two genomic segments involved in the rearrangement,
when the sequence is short (<70 bp) this is often called a micro-homology [13]. These homologies and
micro-homologies have been found involved in several molecular mechanisms generating rearrange-
ments (NAHR for homologies, and MMEJ or MMBIR for microhomologies) [14,15]. In the case of an
insertion, a junctional homology is a sequence segment at the left (resp. right) side of the insertion
site which is nearly identical to the end (resp. beginning) of the inserted sequence. From a detection
point of view, these homologies can have an impact on SV calling performance, since the concerned
region at the inserted site is no longer specific to the reference allele and it is no longer possible to
identify the exact location of the insertion site. Therefore, we systematically compared the insertion
site junction sequences with the inserted sequence extremities to identify stretches of identical or
nearly identical sequences. Half of the insertions contained junctional homologies larger than 5 bp,
and still 25 % larger than 20 bp, mainly represented by dispersed duplications. The size distribution
of the homologies varied between insertion types, novel sequences had small microhomologies (median
of 5bp), mobile elements a medium size (median of 15 bp) and dispersed duplications showed a higher
homology size (median of 86 bp). Interestingly, insertions called by long reads only had larger junc-
tional homologies than insertions that could be discovered by short reads also (median size of 64 bp vs
12 bp resp.), pointing towards junctional homologies being a potential difficulty factor for short-read
based callers.

2.2 Using simulations to investigate the factors impacting the insertion calling recall

In real insertion call sets, most of the previously identified factors impacting SV discovery are
correlated. In order to quantify the impact of each factor independently, we produced various simulated
datasets of 2x150 bp reads at 40x coverage, containing each 200 homozygous insertion variants on the
human chromosome 3. As a baseline, we simulated 250 bp novel sequences taken from yeast exonic
sequences inserted inside human exons. This is meant to represent the easiest type of insertions to
detect, where inserted sequences contain very few repeats and are novel in the genome, the genomic
context of insertion is also simple and repeat-free, and breakpoint junctions do not have any homology.
Then, we considered 3 scenarii of simulations, where only one of the three factors, among insertion
type (complexity of the inserted sequence), insertion site location and homology at the breakpoints, is
changed at a time with respect to the baseline simulation. Four insertion variant callers were evaluated
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on these datasets. They were chosen according to their good performances in recent benchmarks [5]
and to maximise the methodological diversity. GRIDSS[8], Manta[12] and SVaba[4] are based on a
first mapping step to the reference genome, contrary to MindTheGap[7] which uses solely an assembly
data structure (the De Bruijn graph).

Discovery rates for all four methods are presented for the different simulated datasets in Table
1. On the baseline simulation, all tools had a close to perfect discovery rate. However, it should be
noted that the tools were evaluated solely on their ability to detect an insertion event at a given site
regardless of the predicted genotype and the resolution of the inserted sequence. As a matter of fact,
only MindTheGap was able to return sequence resolved insertions. The other tools returned either
only the insertion site or the insertion site with a partial inserted sequence.

Impact of the insertion type. When simulating various insertion types, GRIDSS was the only
tool whose discovery rate was not impacted. Manta could not find any dispersed duplications and
very few mobile elements, MindTheGap was unable to detect any type of tandem duplications and
SVaba was not able to detect any tandem repeat with a small motif and almost half of the mobile
element insertions (Table 1).

Impact of microhomology. Concerning junctional homology, GRIDSS and SVaba were both
the less impacted tools. Only the scenario with 50 bp size microhomology impacted them, reducing
by 30 to 40 % their discovery rate. Manta discovery rate decreased with the size of microhomology,
starting at 50 bp size, reaching 0 % with 150 bp homologies. MindTheGap was the most impacted by
microhomology, being unable to detect insertions with microhomology at any tested size.

Recall (insertion site only)
GRIDSS Manta MindTheGap SVaba

Baseline simulation: 250 bp novel sequences in exons 100 95 99 97
# False positive 33 0 14 184

Scenario 1
Insertion type

Dispersed duplication 97 0 97 91
Tandem duplication 98 98 0 100

Mobile element 100 5 70 58
Tandem repeat (6 bp pattern) 100 92 0 0
Tandem repeat (25 bp pattern) 100 71 5 99

# False positive 33-533 1-22 14-20 6-592

Scenario 2
Microhomology

20 bp 100 99 0 96
50 bp 70 45 0 59
100 bp 100 14 0 100
150 bp 100 0 0 100

# False positive 33-200 2-56 15 2-595

Scenario 3
Genomic location

Low GC content 84 100 72 99
medium GC content 85 100 69 99

high GC content 86 100 75 99
Non repeat 83 99 76 99

Simple repeat 86 100 71 98
SINE 86 100 53 99
LINE 82 99 91 100

Real locations 84 80 38 71
# False positive 106-144 3-9 16-21 6-25

Scenario 4: real insertions at real locations 45 35 6 44
# False positive 513 107 19 523

Tab. 1. Discovery rate of several short-read insertion callers according to different sim-
ulation scenarii. Cells of the table are colored according to the variation of the recall value of the
given tool with respect to the recall obtained with the baseline simulation (first line, colored in blue):
cells in red show a loss of recall >10%, cells in grey show no difference compared to baseline recall at
+/- 10%. For each scenario, the last line indicates the range of the number of false positive predictions.

Impact of the genomic location. Concerning the impact of the genomic context of insertion,
the tools showed two distinct behaviors. On the one hand, Manta and SVaba were not affected by
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the repeat or GC content of the regions hosting the insertion site. On the other hand, both GRIDSS
and MindTheGap showed a loss of recall even in repeat-free and medium GC contexts with respect
to exonic locations simulated in the baseline simulation. Interestingly, when using the locations of
the real insertions of NA19240 to simulate simple insertions, all tools underwent a loss in their recall
compared to the same inserted sequences but in exonic locations in the baseline simulation.

Finally, when simulating the real insertions at their real location as described in the NA19240
variant calling file for the chromosome 3, the discovery rate of all tools dropped to less than 45 %,
reaching for many tools their lowest values among the different simulated datasets. This suggested
that several levels of difficulties might be combined in real insertions. GRIDSS reached the largest
discovery rate (45 %), but it produced the largest amount of false positive discoveries. Surprisingly, the
amount of false positives was not constant for most tools, it increased when the simulated insertions
are less well discovered or with particular insertion types.

3 Discussion

We have presented here one of the most detailed and comprehensive analyses of factors impacting
the detection of insertion variants in the human genome with short read re-sequencing data. This could
be possible thanks to the publication of an exceptional SV call set by Chaisson et al[10]. Not only, this
catalog of insertion variants is considered as the most exhaustive for a given human individual, but this
is also the first set with sequence-resolved events for any size and type of insertions. This resolution of
sequence enabled us to propose a refined classification of insertion variants and to quantify the presence
of sequence homologies at the breakpoint junctions. Our results showed a strong over-representation
of insertion types and contexts towards the most difficult ones to detect with short-read data, for
instance tandem repeats inserted in simple repeat contexts. Moreover, most insertions and even the
simplest types, such as novel sequence insertions, showed junctional homologies of substantial size that
affect SV calling with short reads.

Our simulation protocol enabled to study each difficulty factor independently and highlighted the
larger impact of insertion type compared to insertion location. However, all studied factors taken
independently could not explain the whole loss of discovery rate and there is probably an important
synergetic effect of combining in a single insertion event several of the studied factors. Surprisingly,
the different evaluated tools showed very contrasted sensitivities to the different simulated difficulties.
This result suggests that combining the calls of several SV callers could improve substantially the
overall discovery rate. Currently, Structural Variation studies are based on intersection selections of a
combination of SV callers, selecting only the calls that are discovered concordantly between different
tools to increase the precision. [5]. Our results suggest an utterly different way of combining tools
by taking a careful union of calls based for instance on the type or location of insertions. The main
shortcoming of this strategy would then be to control the false positive rate. Our results on simulated
data showed that except for MindTheGap, short-read based tools can not provide sequence-resolved
variants. We argue that systematically assembling the inserted sequence, such as what is performed
with MindTheGap using the whole read set instead of a sub-sample, could help in controlling the false
discovery rate.

4 Methods

Data origin . The SV call set of individual NA12940 was downloaded from the following link: ftp:
//ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/genotype/nstd152/NA19240.

BIP-unified.vcf.gz. Out of the 17,026 described insertions, only insertions that were sequence re-
solved (ie. with an inserted sequence entirely defined) and that were also present in at least one of
the parent were kept, resulting in a set of 15,693 insertions. The human reference genome version for
this study was Hg38.

Insertion annotation . TandemRepeatFinder (TRF) was used to annotate tandem repeats
within each inserted sequence [16]. Recommended parameters were used, except for the maximum
expected TR length (-l) which was set to 6 millions. In order to annotate Mobile Elements (MEs)
in inserted sequences, we used one of the annotation tools of RepeatMasker, namely dfam [17]. Each
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inserted sequence was scanned by dfam with the standard hmm profile database of human MEs pro-
vided by the tool. For the detection of dispersed duplications and the occurrence count of their copies
in the reference genome, each inserted sequence was locally aligned against the human genome using
Blat with default parameters [18]. Only the alignments with at least 80 % identity were kept. For
the detection of tandem duplications, both breakpoint junction sequences were aligned against the
inserted sequence using Blat.

Junctional homology detection . From the previous obtained alignments between the break-
point junctions and the inserted sequence, only the alignments with at least 90 % identity and occurring
as close as 10 bp from extremities of the inserted sequence and from the insertion site were kept. Only
alignments between the left (resp. right) side of the insertion site and the end (resp. beginning) of
the inserted sequence were kept. In case of multiple candidates hits at one side of the junction, the
one located at the closest position from extremities was kept. If homologies were found at both sides
of the junction, the homology size was obtained by summing both alignment sizes.

Genomic context characterization . To study the genomic context of insertions, we used the
repeat content annotations of RepeatMasker from the UCSC genome browser for the Hg38 genome
and the gene annotations from the Gencode v32. To study the GC content, we segmented the genome
into isochores with isoSegmenter [19], giving the following five families of isochores: <37 %, 37-41%,
41-46%, 46-53% and >53% GC content.

Simulations. 18 sequencing datasets were simulated to characterize the impact of potential
difficulties for variant calling. Each dataset was obtained by altering the human chromosome 3 with
200 insertions. Reads were generated using ART with the following parameters : 2x150 bp reads, at
40 X coverage, with insert size of 300 bp on average and 20 bp standard deviation [20].
Baseline simulation. We simulated 250 bp novel sequence insertions located in exons without any
microhomology at the breakpoint junctions. Novel sequences were extracted from random exonic
regions of the Saccharomyces cerevisae genome.
Scenario 1: Insertion type impact. Insertion locations were identical to the baseline simulation,
but the 250 bp inserted sequences were alternatively replaced by dispersed duplications, tandem
repeats, tandem duplications or mobile elements. Two types of tandem repeats were simulated, with
a pattern size of 6 bp or 25 bp, the pattern originating from the left breakpoint junction. 200 Alu
mobile element sequences with a size ranging between 200 and 300 bp were randomly extracted from
the human genome based on the RepeatMasker annotation. Tandem duplications were generated
by duplicating the 250 bp left breakpoint sequence. The inserted sequences of simulated dispersed
duplications were extracted from exons of the chromosome 3.
Scenario 2 : Microhomology impact. The 250 bp insertion sequences produced in the baseline
simulation were altered with microhomology. To simulate microhomologies, we replaced the X first
bases of each insertion with the same size sequence originating from the right breakpoint sequence.
We simulated four microhomology sizes : 20, 50, 100 and 150 bp.
Scenario 3 : Location impact. The 250 bp insertions from the baseline simulation were inserted in
specific genomic contexts : either inside different types of mobile elements, namely SINEs and LINEs,
in simple repeats or in non-repeated regions with different GC contents. We defined three families of
GC content : low (<41%), middle (41-46%) and high (>46 %).
Scenario 5 : Real insertions at real locations. The 889 insertions located on the chromosome 3
from the NA19240 call set were simulated as described in the vcf file.

Insertion calling. Simulated reads were aligned with bwa against the hg38 reference genome, and
read duplicates were marked. GRIDSS v2.8.0, Manta v1.6.0, MindTheGap v2.2.1 and SVaba v1.1.0
were all run using recommended, or otherwise default, parameters [8,12,7,4]. Only ”PASS” insertions,
that were larger than 50 bp, were kept for the recall calculation. Since most of the tools are not able
to output sequence resolved variants, the discovery rate was assessed solely based on the insertion site
location prediction with a 10 bp margin around the expected location (after left-normalization).
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[7] Guillaume Rizk, Anäıs Gouin, Rayan Chikhi, and Claire Lemaitre. Mindthegap : integrated detection and
assembly of short and long insertions. Bioinformatics, 30(24):3451–3457, Dec 2014.
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A biological signature can be defined as a set of biological features that characterize a phenotype or
a population. To identify this signature, we analyze observational data, i.e. gene expression, protein
quantification. However, without a prior knowledge network, this approach does not take into account
the regulation dependencies.

In our study, we used two Boolean regulatory networks that represent the differenciation of T helper
lymphocytes (Th) [1,2]. Each node is a gene and each edge characterizes an activation or an inhibition.
The dynamic simulation of those models lead to the generation of steady states and attractors. The
classification of those steady states allows to predict in which sub-types of Th (canonical phenotypes),
the system will differenciate in, according to the environmental inputs.

We developed a method that automatically classifies steady states based on given signatures using
Formal Concept Analysis (FCA), a symbolic bi-clustering technic [3,4]. FCA generated a lattice
structure describing the associations between elements in the signature and steady states of the Boolean
network. We defined the concept of a signature in a Boolean network and of a phenotype with the
FCA.

We first validated our method on the smallest network [1]. We classified the steady states according
to the three given phenotypes that are generated with two simulations (with or without IL12). Because
the number of steady states increases with the network size and the number of simulation conditions,
we then evaluated our approach with a larger network [2]. The analysis of this lattice lead to the same
classification than the manual classification performed in [2]. Moreover, we enriched the biological
signatures according to the regulation dependencies. The enriched signatures characterize variant
phenotypes which are sub-types of the canonical phenotypes. When variants are shared by several
canonical sub-types, they are called hybrid phenotypes. Compared to the initial results, we identified
a new hybrid phenotype using extended simulation conditions.
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Anna Ingólfsdóttir, Bud Mishra, and Hanne Riis Nielson, editors, Transactions on Computational Systems
Biology VII, pages 56–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
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Abstract The IFB and its partners are the bearers of numerous initiatives to accompany              
biologists through the new challenges of open science. This federation leads project to build              
automated process around the Data Management Plan (DMP). DMP is a static document,             
initiated at the beginning of a project, keeping tracks of his different stages. This central role                
enforce the necessity of making the DMP active and machine actionable. The goals of              
maDMP4LS and OpenLink projects, both starting in early 2020 ( the 1st of april for               
maDMP4LS and the 1st of february for openlink), are to set up dashboards and automatic               
procedures to support researchers in data management and guide them towards the adoption of              
a FAIR approach. 

Keywords Data Management plan, Open Science, FAIR. 

 

1. Introduction 

The French Bioinformatics Institute (IFB), with its two computing infrastructures (NNCR-cluster           
and NNCR-cloud) and its 30 member core facilities, is an essential structure for Life Sciences,               
providing a production, analysis and management environment for the biology and medical biology             
communities. 

In the Life Sciences landscape, bioinformatics core facilities play a key role for many scientific               
communities, by providing software and reference data in a computational environment tailored for             
high-throughput computing. They have to handle huge amounts of data generated by scientists in the               
-omics era, which require an ever-increasing storage and computation capacity. 

Bioinformatics platforms also play a pivotal role in the life cycle of scientific data. They are the                 
places where raw data are analyzed and integrated before being made available to the community by                
deposition in international databases. 

In order to help scientists to adopt best practices in data management, IFB and its partners have                 
launched two projects that have been selected during the “ANR Flash Données Ouvertes”: OpenLink              
and maDMP4LS. These two projects, starting in early 2020 for 18 months, rely on the infrastructure                
federation supported by the IFB for their development.  

 

2. Federation and mutualisation of infrastructure 

Since February 2018, the IFB has adopted a new organisational mode aimed at federating all its                
infrastructures. Thus, a collaborative network called the National Network of Computing Resources            
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(NNCR) brings together engineers and bioinformaticians with the desire to co-construct a computing             
environment for biology.  

This federation aims to be non-intrusive, leaving each partner infrastructure free to adopt the              
solutions, methodologies or organizational structure proposed by the IFB according to their needs.  

This federation makes it possible today to co-construct the tools and solutions that will enable the                
adoption of the good practices of the FAIR principles and to accompany biologists towards open               
sciences. Actors of this federation are now leading innovation projects to build automated process              
around the Data Management plan (DMP). Taking advantage of digital technologies, automatization of             
data management, and data transfer between data production sites and bioinformatics facilities, it             
becomes conceivable to build an integrated system where DMP and tools interact to create a data                
continuum for Life Sciences.  

 

The DMP, the founding element of data managementA key tool in the adoption of FAIR                
practice and principles is the Data Management Plan (DMP). It helps reflecting, anticipating and              
recording the decisions made regarding the different issues of scientific output production and             
management. Initiated at the beginning of a project, it should be updated throughout the project and                
further after, and thus provide a dynamic inventory of the outputs of a project and include some                 
information regarding their provenance and accessibility. 

Data Management Plan (DMP) is a static document, often created to initiate a new project, as a                 
part of research practice, in the form of a list of questions and structured answers. Considering that                 
DMP is meant to “provide a dynamic index that articulates the relevant information relating to a                
project and linkages with its various FAIR components”², this gives it a central role in the information                 
exchange and in the coordination of data management implementation and enforces the necessity of              
rendering DMP active and machine actionable.  

 

3. maDMP4LS : machine actionable DMP for Life Sciences 

In partnership with the DMP-OPIDoR team (INIST - CNRS), IFB has launched the maDMP4LS              
project that will produce a new machine-actionable version of DMP-OPIDoR (maOPIDoR ? ). In is               
first version, this new tool will help to configure the computing environments according to the               
information contained in the DMP.  

This tool will be based on the common DMP model that is being produced by the RDA DMP                  
Common Standard working group. The common model will be extended to meet the needs of DMP                
OPIDoR user group and IFB. The RDA DMP Common Standard is a minimum set of universal terms                 
which ensure basic interoperability between systems producing or consuming machine-actionable data           
management plans. 

The DMP information will be used on computational infrastructures to help managing the             
scientific data: linking data with scientific projects, determining storage requirements, defining access            
policies, assessing the fate of the data, etc. This will be achieved with an API to retrieve DMP                  
information for the automated processes (projects storage space management) on the research            
environments. 
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In a second time, information pertaining to the various processes applied to the data will be                
pushed to the machine-actionable DMP.  

 

4. Openlink,  an interoperable network of data management tools 

The web application Openlink will facilitate the transversal identification of projects and their             
associated data, from the Data Management Plan, to the publication, through the LabGuru electronic              
lab notebook and data processing tool such as OMERO. The aim is to streamline the transfer of data                  
from production to archiving, while automatically enriching data.  

The preliminary work of the OpenLink project has made it possible to create a matrix describing                
the data that is automatically accessible for numerous tools that support research projects (data              
management plan manager, electronic laboratory notebook, data visualization platform, analysis tools,           
data storage service, institutional repositories). 

This matrix describes a fertile ground for the implementation of "machine actionable" tools to              
support researchers from the definition of their data management plan to the publication of data and                
results in open science by removing the many technical barriers related to the interoperability of tools. 

Transversal metadata described in this matrix can be managed using API (Application            
Programming Interface). API allows users to submit several query parameters to a server in order to                
fetch or send data. So, information retrieved with API provided by research tools can be used to                 
support researchers in the process of publishing their data. 

 

5. Conclusion 

The aim of the maDMP4LS and OpenLink projects is to set up dashboards and automatic               
procedures to support researchers in data management and guide them towards the adoption of a FAIR                
approach compatible with the commitments made by the Ministry of Research in favour of open               
science. The FAIR approach has to be initiated from the very beginning of each research project                
through the elaboration of a Data Management Plan. 
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Clonal  microbial  populations  are  inherently  heterogeneous,  and  such  a  phenotypic  diversity  is             
often  considered  an  adaptation  strategy.  In  clinical  infections, like  in  mycobacterium  tuberculosis             
case, phenotypic  diversity  has  been  found  to  be  associated  with  drug  tolerance,  which  may  favour                
genetic  resistance  evolution.  In  order  to  study  phenotypic  variation  in  bacteria, a  microfluidic  system               
is  being  developed.  The  purpose  is  to  track  single  cells  by live-cell  fluorescence  imaging  and  to  carry                  
out  a  screening  at  the  single-cell  level.  A  direct  application  is  to  screen  molecules  that  homogenize                 
bacterial   phenotypes,   in   order   to   enhance   the   effectiveness   of   standard   treatments.  

With  a  total  of  almost  15000  pictures  taken  during  a  single  experiment,  the  task  of  image                 
processing  is  way  too  huge  to  be  manually  handled  on  a  daily  basis.  Analyzing  all  those  pictures  by                   
hand  could  be  painful  and  time  consuming.  To  palliate  the  issue,  we  propose  a  semi-automated                
approach  that  combines  both  image processing  and  statistical  analysis  of  extracted  data  through  a               
wizard-based   application   to   alleviate   the   users’workload.   

Throughout  the  process  of  development  we  adopted  a  User-Centered  Design  (UCD)  approach,             
where  the  needs  of  users  are  primarily  considered  from  start.  At  early  stages,  the  focus  is  on                  
understanding  users  behavior,  needs,  and  goals.  During  the  user  research  phase,  shadowing  workshops              
and  interviews  are  organized  both  to  identify  the  different  pain  points  in  the  user  journey  and  find  out                   
a  few  opportunities  to  ease  the  process.  We  also  benchmarked  existing  cell-imaging  softwares  used  by                
scientists  like  ImageJ  or  Fiji  to  create  a  baseline  for  a  better  understanding  of  the  current  user                  
experience.  In  our  application,  the  succession  of  screens  guides  the  user  from  metadata  up  to  results                 
visualization   through   different   steps.   

(1)  In  the  first  steps,  the  user  provides  information  about  its  experiment  and  imports  the                
microscope  output .dv  files  into  the  application.  The  tedious  task  of extracting,  naming  and  organizing                
files  according  to  the  corresponding  experimental  treatment  is  then  automatically  executed.  A  key              
issue  in  image  processing  is  to  detect  colonies  of  bacteria  embedded  in  noisy  background.  (2)  The                 
next  step  therefore consists  in  building  a  mask  of  the  colonies  using  the  control  fluorescent  reporter:  a                  
binary  image  of  the  mask  is  thus  created  at  time  point  by  thresholding  the  kernel  density.  Further                  
filtering  and  cleaning  are  required  to  remove  irrelevant  scories  and  patches  in  the  mask  object  by                 
using  both  heuristic  criteria  (distance  to  the  center,  patches  on  border,  size  of  the  patches…)  and  a                  
shape  complexity  index.  The  remaining  colony  mask  is  then  refined  by  trimming  pixels  at  its  edges  .                  
(3)  Colonies  that  do  not  exhibit  an  exponential  growth  are  discarded  and  outlier  time-points  within                
sets  of  observations  are  identified  with  a  robust  linear  regression.  (4)  After  automated  filtering  the                
user  is  invited  to  manually  control  the  filtering  among  pictures  that  should  be  kept  or  discarded.  (5)                  
Robust  statistical  parameters  (such  as  mean,  variance,etc.)  are  then  computed  based  on  the  posterior               
probability  of  a  two-components  mixture  gaussian  model  and  interactive  visualizations  of  the  results              
are   provided.  

Considering  the  tremendous  number  of  pictures  to  process  and  analyze  we  invested  our  efforts               
and  imagination  to  design  an  interface  requesting  minimal  participation  from  users  that  reduce              
significantly   errors   and   time   consumption   for   biologists.   
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Since November 2018, the IFB (Institut Français de Bioinformatique) has deployed, in addition to the Cloud                
infrastructure, a central HPC (High Performance Computer) computing resource: the IFB Core Cluster. This              
resource, hosted at the IDRIS datacenter, offers a capacity of 4000 cores (HT - Hyper Thread) and 1 Po of                    
storage. It is implemented and operated by a collective of about ten regional platform engineers from the                 
entire network of IFB platforms ("mutualised task force") who dedicate a percentage of their time to the                 
development of this common project. 
 
The IFB federation NNCR Cluster 
The IFB Core Cluster, a Core resource, has always been designed to take part in a set, the NNCR for                    
National Network of Computational Resources. Indeed, 6 open infrastructures have been implemented on the              
regional platforms for many years now. The initial wish was to build a "federation" of clusters. And even if                   
this term "federation" can be confusing, we imagined to set up a certain (à la carte) harmonization of                  
practices, technologies ... to ultimately offer users a unified experience from one cluster to another. The other                 
interest is the sharing of administration recipes, user documentation in order to reduce the individual               
maintenance costs.  
Thus, since the end of 2019, a certain number of advances are to be noted: 

- From a single git repository (gitlab.com/ifb-elixirfr/cluster/tools), the installation of tools (Conda           
packages and Singularity images) is done simultaneously on the IFB Core Cluster and on the ABiMS                
and IGBMC/BISTRO platforms. 

- The My account manager, developed by the GenOuest platform, has been ported to the IFB Core                
Cluster and should be implemented on the ABiMS platform in the near future. 

- Several Ansible roles developed by the TaskForce are now played on several IFB infrastructures. In               
particular, the Ansible role for the deployment of the Slurm Scheduler developed by the IGBMC               
platform for the IFB Core Cluster allowed the implementation of a new Slurm cluster on the ABiMS                 
platform in just 2 days. 

 
usegalaxy.fr 
Since the beginning of 2020, the IFB Core Cluster Task Force proposes a national Galaxy instance                
usegalaxy.fr in the line of usegalaxy.* (org, eu, org.au, ...). This instance, like the Core Cluster, is intended to                   
be federative. Several managers of local instances have already decided to migrate their users to the national                 
instance. usegalaxy.fr also offers "subdomains" which allow to propose subsets of tools and a dedicated               
homepage around a theme or a project. Thus, workflow4metabolomics.usegalaxy.fr and          
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proteore.usegalaxy.fr have joined this instance. The goal is once again to pool efforts to offer a service of the                   
highest quality, while maintaining existing thematic identities. 
Access is finally facilitated by 3 connection modes: anonymous mode, self-registration and authentication             
via the ELIXIR AAI authentication portal (eduGAIN, ORCID, Google or LinkedIn). The instance already              
provides more than 400 tools.  
The instance itself is like the IFB Core Cluster and usegalaxy.eu fully managed via Ansible and Continuous                 
Integration (CI) processes. Thus the contributions to the project can be done in an open and secure way via                   
gitlab.com/ifb-elixirfr/usegalaxy-fr: instance tuning, installation of banks and tools... To guarantee a quality            
of service, tests on a set of workflows provided by the Galaxy Training Network are launched periodically. 
 
Finally, it is interesting to note that all these developments have in common the fact that they were born                   
within the platforms, were then refactorized, generalized and deployed on the IFB Core Cluster to finally be                 
redistributed to other regional platforms. 
 
 
 

  

 

Paper 165

66



Inferring biochemical reactions and metabolite structures using a molecular 
transformation approach 

Arnaud BELCOUR
1, Jacques NICOLAS

1, Anne SIEGEL
1 and Gabriel MARKOV

2

1Univ Rennes 1, Inria, CNRS, Irisa, 35052, Rennes, France
2 CNRS - Sorbonne Université - Integrative Biology of Marine Models (UMR8227) - Station 

Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France

Corresponding Author: gabriel.markov@sb-roscoff.fr

Paper Reference:  Belcour et al. (2020) Inferring Biochemical Reactions and Metabolite Structures to 
Understand Metabolic Pathway Drift, iScience 23, 2020, 100849. 
https://doi.org/10.1016/j.isci.2020.100849

Integrating large-scale mass spectrometry data into genome-scale metabolic networks is challenged by 
knowledge gaps, even in the most studied model organisms [1]. In emerging model organisms, that  
constitute the major part of biodiversity, the issue is even more acute, due to structural variation within 
biochemical pathways during evolution [2]. Therefore, specific bioinformatic tools are necessary to infer  
experimentally testable biochemical reactions and metabolic structures. We developped such an approach, 
abstracting molecular transformations from known biochemical reactions. Then, those molecular 
transformations were used either for connecting known metabolites to partially known pathways, or to infer  
new metabolite structures corresponding to unannotated metabolites with a known mass-to-charge ratio. As a 
proof of concept, we implemented this approach into the pathmodel program [3], using data from two 
pathways in a model red algal, and got inferences that are consistent with experimental data. Specifically,  
one of the two metabolite structures predicted from known mass-to-charge ratios was identical to a molecule 
recently identified in other red algae [4]. Generalizing our approach to scale it up will necessitate further  
optimization of atom mapping procedures to enable comparability of identical molecular transformations 
carried on different molecule families, and in line with this, further refining of the Enzyme Commission  
classification [5].

Acknowledgements

This research received funding from the French Government via the National Research Agency investment expenditure 
program IDEALG (ANR–10–BTBR–04) and from Region Bretagne via the grant « SAD 2016 – METALG (9673) » 

References

[1] Clement Frainay, Emma L. Schymanski, Steffen Neumann, Benjamin Merlet, Reza M. Salek, Fabien Jourdan and 
Oscar Yanes. Mind the Gap: Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals 
Poorly Covered Areas. Metabolites, 8, 2018.

[2] Eric S. Haag and John R. True. Developmental System Drift in Nuno de la Rosa, L. & Müller, G. (Eds.) 
Evolutionary Developmental Biology: A Reference Guide, Springer International Publishing, pages 1-12, 2018.

[3] https://github.com/pathmodel
[4] Maria Orfanoudaki, Anja Hartmann, Ulf Karsten, and Markus Ganzera. Chemical profiling of mycosporine- like 

amino acids in twenty- three red algal species. Journal of Phycology, 55: 393-403, 2019. 
[5] Andrew G. McDonald and Keith F. Tipton. Fifty-five years of enzyme classification: advances and difficulties

The FEBS journal, 281, pages 583-592, 2014.

Paper 170

67



Overcoming uncollapsed haplotypes in long-read assemblies of
non-model organisms

Nadège Guiglielmoni1, Antoine Houtain2, Alessandro Derzelle2, Karine van Doninck2 and
Jean-François Flot1,3

1 Service Evolution Biologique et Ecologie, Université libre de Bruxelles, 1050 Brussels, Belgium
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Abstract Third-generation sequencing, also called long-read sequencing, has revolution-
ized genome assembly: as PacBio and Nanopore technologies have become more accessible
in technicity and in cost (with decreasing error rates and increasing read lengths), long-
read assemblers have flourished and are starting to deliver chromosome-level assemblies.
However, an independent, comparative assessment of the performance of these programs
on a common, real-life dataset is still lacking.
To fill this gap, we tested the efficiency of long-read assemblers on the genome of the ro-
tifer Adineta vaga, a non-model organism for which both PacBio and Nanopore reads were
available. Although all the assemblers included in our benchmark aimed to produce a hap-
loid genome assembly with collapsed haplotypes, we observed strikingly different behaviors
of these assemblers on highly heterozygous regions: allelic regions that were most divergent
were sometimes not merged, resulting in variable amounts of duplicated regions. We iden-
tified three strategies to alleviate this problem: setting a read-length threshold to filter out
shorter reads; choosing an assembler less prone to retaining uncollapsed haplotypes; and
post-processing the assembled set of contigs using a downstream tool to remove uncollapsed
haplotypes. These three strategies are not mutually exclusive and, when combined, gener-
ate haploid assemblies with genome sizes, coverage distributions, and k-mer completeness
matching expectations.

Keywords genome assembly, long reads, benchmark, heterozygosity

Introduction

With the advent of long-read sequencing, high-quality assemblies are now commonly achieved on all
types of organisms. The competition between the two main long-read sequencing companies, Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (Nanopore), has prompted an increase in
output as well as a decrease in cost, making their technologies more accessible to research teams and
more applicable to challenging genomes. The main advantage of long reads over short reads (such
as those generated by Illumina sequencing platforms) is their typical length that averages around 10
kilobases (kb) [1]. Their length facilitates genome assembly into contigs and scaffolds as they can span
repetitive regions [2]; they can also be used to resolve haplotypes [3].

However, long reads have a much higher error rate than Illumina data, and these errors are mainly
insertions and deletions for long reads vs. substitutions for Illumina reads. PacBio data have a random
error pattern that can be compensated with high coverage: as a result, reading the same DNA regions
over and over several times can be used to generate a consensus with an accuracy close to 99%,
in a process dubbed Circular Consensus Sequencing (CSS) and marketed as PacBio HiFi (standing
for ”high-fidelity”)[4]. Nanopore reads, on the other hand, have systematic errors in homopolymeric
regions and are thus often combined with Illumina sequencing to correct the errors still present in
contigs, in a process called ”polishing” [5][6]. Nanopore reads keep getting longer, with runs attaining
N50s over 100 kilobases (kb) and longest reads spanning over 1 Megabase (Mb) [7][8].

This progress has prompted the development of many programs to produce de novo assemblies
from long reads, all of which follow the Overlap Layout Consensus (OLC) paradigm [9]. Briefly, OLC
methods start by building an overlap graph (the ”O” step), then simplify it and clean it by applying
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various heuristics (the ”L” step), and finally compute the consensus sequence of each contig (the ”C”
step). Some long-read assemblers follow strictly this paradigm, such as Flye [10], Ra [11], Raven [11]
(a further development of Ra by the same author), Shasta [12] and wtdbg2 [13]; whereas others such
as Canu [14] and NextDeNovo add a preliminary correction step based on an all-versus-all alignment
of the reads.

Long-read assemblers were recently benchmarked on real and simulated PacBio and Nanopore
bacterial datasets [15], and all assemblers tested proved their efficiency at reconstructing full microbial
genomes within one hour and with a low RAM usage. The Flye publication [10] provides an evaluation
of Canu, Flye, Ra and wtdbg2 on several eukaryotic genomes. However, more complete evaluations
of these tools on their ability to provide structurally correct (i.e., without artefactually duplicated
genome regions) haploid assemblies from non-model diploid organisms are still lacking. To fill this
gap, we present here a quantitative and qualitative assessment of seven long-read assemblers on a
relatively small eukaryotic genome, Adineta vaga, for which a short-read, fragmented assembly was
published some years ago [16]. As with most non-model organisms, Adineta vaga’s genome presents a
mid-range heterozygosity of ca. 2% with a mix of highly heterozygous and low-heterozygosity regions,
making such genome more challenging to assemble than those of model organisms that have often a
very low level of polymorphism [17]. Assemblies were evaluated with several measures to assess for
contiguity, quality and proper haplotype collapsing:

– assembly size: the sum of the lengths of all the contigs in the assemblies;
– N50: the largest contig length for which 50% of the assembly size occur in fragments equal or

greater in length;
– BUSCO score: the number of features from a set of orthologs retrieved completely in the

assembly, in single-copy or duplicated;
– k -mer completeness: the percentage of k -length words frequently observed in a low error-rate

set of reads that are present in the assembly;
– coverage: the number of reads covering a given position in a contig (calculated after mapping

reads on the assembly).

Results

Assemblies of PacBio reads

The PacBio assemblies have variable lengths, ranging from 89 Mb (Shasta, reads > 15 kb) to 169
Mb (Canu, all reads). Larger assemblies also present higher numbers of duplicated BUSCOs as well
as higher k -mer completeness and bimodal coverage distributions (Figure 1). N50s range from 301 kb
(Canu, all reads) to 12 Mb (NextDeNovo, all reads).

Canu produced the largest assemblies, between 147 Mb and 169 Mb, as well as the highest number
of duplicated BUSCOs. Besides, its k -mer completeness is systematically higher than the expected
value of 50% for a haploid assembly of a diploid genome. Canu’s assembly coverage distributions
exhibit two peaks around 100X and 210X. The half-coverage peak represents allelic regions that have
not been collapsed, resulting in artefactually duplicated regions in the assembly.

Flye, NextDeNovo, Raven and Shasta assemblies also have two peaks in their coverage distribu-
tion, although the 100X peak is smaller than with Canu, and a third low-coverage peak for Raven
and Shasta. Flye assemblies all have similar lengths, BUSCO score, k -mer completeness and coverage
distribution regardless of the read-length threshold used; however, their N50 decreases with increas-
ing read-length threshold. NextDeNovo, Raven and Shasta, on the other hand, produced shorter
assemblies when smaller reads were removed. The 100X peak is absent in NextDeNovo and Shasta
assemblies when selecting reads superior to 15 kb. While the N50 of NextDeNovo assemblies decreases
with read selection, it remains close to other assemblers. The quality of Shasta assemblies is greatly
diminished, but this is likely due to a lower reads coverage.

Ra and wtdbg2 both produced assemblies with very small 100X peaks. The sizes of the Ra
assemblies decreased when using higher read-length threshold, with low-coverage contigs disappearing
from the assembly in a fashion similar to Raven; their contig N50, however, remained fairly constant.
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Fig. 1. Statistics of the PacBio assemblies obtained, with A) N50 plotted against total assembly length, B)
number of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, C) mean
k -mer completeness and D) long-reads coverage distribution of the contigs of one replicate assembly for each
program. In A and B, each program is represented by five points that correspond to five replicate runs.
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By contrast, assembly size did not vary for wtdbg2 when using higher read-length threshold but contig
N50 increased.

Assemblies of Nanopore reads

Similarly to the PacBio assemblies, Nanopore assembly sizes range from 93 Mb (Ra, reads > 40 kb)
to 154 Mb (Canu, reads > 10 kb) (Figure 2). Except when a stringent read-length threshold is applied,
all assemblies exceed the expected size of 102.3 Mb. Nanopore assemblies generally achieve a much
higher contiguity than PacBio assemblies: while PacBio assemblies yield a highest N50 of about 2.5
Mb, with the exception of NextDeNovo assemblies, Nanopore assemblies reach 12.5 Mb (wtdbg2, reads
> 30 kb). The number of complete single-copy BUSCOs is lower in Nanopore assemblies (up to 600)
than in PacBio assemblies (up to 700), and the number of duplicate complete BUSCOs is also much
smaller (up to 50 with Nanopore vs. up to 250 with PacBio). These lower BUSCO scores, together
with the lower k -mer completeness of Nanopore assemblies, likely result from the non-random error
pattern of Nanopore reads that produces errors (mostly indels) in the consensus sequences produced
by the assemblers.

As for PacBio reads, Canu assemblies of Nanopore reads are oversized and the coverage distri-
bution shows two distinct peaks around 75X and 160X, indicating that many haplotypes have not
been collapsed and remain present in two copies in the assemblies. Flye, NextDeNovo, Raven and
Shasta also present two peaks, and Raven and Shasta have a third peak corresponding to low-coverage
contigs. Although Raven’s N50 increases when shorter reads were filtered out, this is not the case for
Flye, NextDeNovo and Shasta. Raven assemblies improve also with increasing read-length threshold:
low-coverage contigs disappear, assembly length becomes closer to expectations, and BUSCO score
increases. Likewise, Ra assemblies improved with read selection: when using only reads longer than 30
kb, the low-coverage and half-coverage regions disappeared completely. However, when keeping only
reads over 40 kb, the assembly N50 decreased and genome size dropped under the expected value.

Purging duplicated regions

As our long-read assemblies contained various amount of uncollapsed haplotypes, resulting in
assemblies larger than expected, we further tested the possibility of improving these assemblies by
collapsing haplotypes a posteriori with purge haplotigs [18]. This tool relies on coverage distribution,
that proved in our analysis a key aspect to identify uncollapsed haplotypes. We tested this program
on assemblies produced with all reads, as they were systematically oversized, and on only one replicate
run for each assembler tested (as the replicates showed minimal differences).

After purging duplicated regions, all assemblies improved except for Flye and NextDeNovo that did
not change much (Figure 3): N50s remained stable, but genome sizes became closer to the expected
values. k -mer completeness also decreased and became closer to the expected 50%, except for the
Canu assembly of PacBio reads. None of the purged assemblies exhibited any low-coverage contigs,
and half-coverage peaks were reduced. Ra, Raven and wtdbg2 assemblies after haplotype purging
were similar to those obtained with a high read-length threshold, although low-coverage contigs were
better removed from the wtdbg2 assembly by purge haplotigs.

Computational performance

As computational resources can be a limiting factor in genome assembly, we provide CPU time and
RAM measurements for all the assemblers, except Canu and NextDeNovo that required significantly
higher resources and were therefore run on a computer cluster (Figure 4). The assembler with the
smallest resource consumption was wtdbg2: it required the lowest amount of RAM, ran the fastest
on PacBio reads and was also time-efficient on Nanopore reads. As would be expected, using a read-
length threshold improved RAM usage and CPU time, with the exception of Flye that still required
a high amount of RAM for Nanopore reads. Shasta ran fast but required the largest amount of RAM
for the full Nanopore dataset. Ra and Raven used only a limited amount of RAM, with a peak usage
at 50 GB.
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Fig. 2. Statistics of Nanopore assemblies, with with A) N50 plotted against total assembly length, B) number
of complete single-copy BUSCOs plotted against number of complete duplicated BUSCOs, C) mean k -mer
completeness and D) long-reads coverage distribution of the contigs of one replicate assembly for each program.
In A and B, each program is represented by five points that correspond to five replicate runs.
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Fig. 3. Statistics of PacBio and Nanopore assemblies after purge haplotigs, with A) N50 plotted against total
assembly length, B) number of complete single-copy BUSCOs plotted against number of complete duplicated
BUSCOs, C) mean k -mer completeness and D) long-reads coverage distribution of the contigs.
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Discussion

While PacBio assemblies were superior in terms of BUSCO scores and k -mer completeness, the
contiguity of Nanopore assemblies was far greater for most assemblers. These results are coherent
with the characteristics of these reads. An important finding is that keeping only reads longer than a
given threshold improves in many cases the quality of haploid assemblies.

We found that Canu poorly collapses allelic regions and yields oversized assemblies. The program
does not seem adequate to solve highly divergent regions on its own, but haplotype collapsing was
improved on a Nanopore assembly combined with purge haplotigs. Flye assemblies also exhibited
uncollapsed haplotypes; selecting the longest reads did not help and neither did purge haplotigs.
Still, Flye exhibited both good contiguity and good quality. These two assemblers are likely better
designed for separating haplotypes. wtdbg2 performed well on PacBio data, but less on Nanopore
reads. This program did not seem to have difficulty with heterozygous regions but was rather affected
by low-coverage contigs. Read selection on size did not significantly improve the assemblies, but
purge haplotigs removed low-coverage contigs, therefore improving the output. Although Shasta was
less good in collapsing divergent haplotypes (and neither read selection nor purge haplotype helped
with that) and did not achieve particularly high contiguity, its k -mer completeness and BUSCO
scores were very good. NextDeNovo produced highly contiguous assemblies, but with poorly collapsed
haplotypes. This flaw was improved however on PacBio assemblies when selecting the longest reads.

Ra and Raven performed better on size-selected reads, which led to smaller genome sizes closer
to expectation. With these assemblers, purge haplotigs was also efficient at purging uncollapsed
haplotypes. While Ra and Raven both achieved convincing contiguity and quality, Ra proved more
efficient at producing a haploid assembly. Both Ra and wtdbg2 stood out among all the assemblers
as the ones less prone to retain uncollapsed haplotypes.

We believe that this benchmark will help researchers working on non-model organisms select a
long-read sequencing technology and an assembly method suitable for their project, and will also help
them better understand the resulting assemblies.

Material & Methods

The genome size of Adineta vaga was estimated using KAT [19] on an Illumina dataset of 25
millions paired-end 250 basepairs (bp) reads. The diploid size was estimated to 204.6 Mb, therefore a
haploid assembly should have a length around 102.3 Mb.

Canu, Flye, NextDeNovo, Ra, Raven, Shasta and wtdbg2 were tested on two Adineta vaga long-
read datasets: PacBio reads totalling 23.5 Gb with a N50 of 11.6 kb; and Nanopore reads totalling
17.5 Gb with a N50 of 18.8 kb (after trimming using Porechop, github.com/rrwick/Porechop). All
assemblers were used with default parameters, except for Shasta for which the minimum read length
was set to zero (instead of the default 10 kb setting) and parameters recommended on the github
repository were used for PacBio assemblies. When assemblers required an estimated size, the value
100 Mb was provided. PacBio assemblies were run on all reads, on reads > 10 kb (14.4 Gb) and on
reads > 15 kb (4.7 Gb). Nanopore assemblies were run on all reads, on reads > 10 kb (13,3 Gb),
on reads > 20 kb (8.3 Gb), on reads > 30 kb (5.7 Gb) and on reads > 40 kb (4.10 Gb). To test for
reproducibility, all assemblers were run five times.

To run purge haplotigs, reads were mapped to contigs using minimap2 [20] and we then computed
coverage histograms with purge haplotigs hist, that we used to set low, mid and high cutoffs;
these values were then used by purge haplotigs cov to detect suspect contigs. Finally, we ran
purge haplotigs purge to eliminate duplicated regions.

To evaluate the assemblies, we ran BUSCO 4 [21] against metazoa odb10 (954 features) without
the parameter –long. We ran KAT comp [19] to calculate k -mer completeness by reference to the same
Illumina 2*250 bp dataset used to estimate the genome size. To compute coverage, long reads were
mapped on one replicate assembly per assembler using minimap2 and the coverage was computed with
tinycov, available at github.com/cmdoret/tinycov, with a window size of 20 kb.
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For Flye, Ra, Raven, Shasta and wtdbg2, maximal RAM usage and mean CPU time were measured
using the command time with 14 threads on a computer with an i9-9900X 3.5 Ghz processor and 128
GB RAM. Canu and NextDeNovo were run on different machines as the compute time was too long
(Canu) or the RAM usage was too high (NextDeNovo).
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Abstract Opioid substitution and syringes exchange programs have drastically reduced
hepatitis C virus (HCV) spread in France but HCV sexual transmission in men having
sex with men (MSM) has recently arisen as a significant public health concern. The fact
that the virus is transmitting in a heterogeneous population, with ‘new’ and ‘classical’
hosts, makes prevalence and incidence rates poorly informative. However, additional in-
sights can be gained by analyzing virus phylogenies inferred from dated genetic sequence
data. Here, using a phylodynamics approach based on Approximate Bayesian Computa-
tion, we estimate key epidemiological parameters of an ongoing HCV epidemic in MSM in
Lyon (France). We show that this new epidemics is largely independent from the ‘classical’
HCV epidemics and that its doubling time is one order of magnitude lower (51 days versus
1.75 years). These results have practical implications for HCV control and illustrate the
additional information provided by virus genomics in public health.

Keywords Phylodynamics, Epidemilogy, Hepatitis C, Doubling time, Modelling

Background

It is estimated that 71 million people worldwide suffer from chronic hepatitis C virus (HCV)
infections [1,2]. The World Health Organisation (WHO) and several countries have issued recommen-
dations towards the ‘elimination’ of this virus, which they define as an 80% reduction in new chronic
infections and a 65% decline in liver mortality by 2030 [2]. HIV-HCV coinfected patients are targeted
with priority because of the shared transmission routes between the two viruses [3] and because of
the increased virulence of HCV in coinfections [4–6]. Successful harm reduction interventions, such
as needle-syringe exchange and opiate substitution programs, as well as a high level of enrolment into
care of HIV-infected patients, have led to a drastic drop in the prevalence of active HCV infections
in HIV-HCV coinfected patients in several European countries during the recent years [7–10]. Unfor-
tunately, this elimination goal is challenged by the emergence of HCV sexual transmission, especially
among men having sex with men (MSM). This trend is reported to be driven by unprotected sex, drug
use in the context of sex (‘chemsex’), and potentially traumatic practices such as fisting [11–13]. In
area of Lyon (France), HCV incidence has been shown to increase concomitantly with a shift in the
profile of infected hosts [14]. Understanding and quantifying this recent increase is the main goal of
this study.

Several modeling studies have highlighted the difficulty to control the spread of HCV infections
in HIV-infected MSM in the absence of harm reduction interventions [12, 15]. Furthermore, we re-
cently described the spread of HCV from HIV-infected to HIV-negative MSM, using HIV pre-exposure
prophylaxis (PrEP) or not, through shared high-risk practices [14]. More generally, an alarming in-
cidence of acute HCV infections in both HIV-infected and PrEP-using MSM was reported in France
in 2016-2017 [13]. Additionally, while PrEP-using MSM are regularly screened for HCV, those who
are HIV-negative and do not use PrEP may remain undiagnosed and untreated for years. In general,
we know little about the population size and practices of HIV-negative MSM who do not use PrEP.
All these epidemiological events could jeopardize the goal of HCV elimination by creating a large
pool of infected and undiagnosed patients, which could fuel new infections in intersecting populations.
Furthermore, the epidemiological dynamics of HCV infection have mostly been studied in intravenous
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drug users (IDU) [16–19] and in the general population [20,21]. Results from these populations are not
easily transferable to other populations, which calls for a better understanding of the epidemiological
characteristics of HCV sexual transmission in MSM.

Given the lack of knowledge about the focal population driving the increase in HCV incidence,
we analyse virus sequence data with phylodynamics methods. This research field has been blooming
over the last decade and hypothesizes that the way rapidly evolving viruses spread leaves ‘footprints’
in their genomes [22–24]. By combining mathematical modelling, statistical analyses and phyloge-
nies of infections, where each leaf corresponds to the virus sequence isolated from a patient, current
methods can infer key parameters of viral epidemics. This framework has been successfully applied to
other HCV epidemics [25–28], but the ongoing one in Lyon is challenging to analyze because the focal
population is heterogeneous, with ‘classical’ hosts (typically HIV-negative patients infected through
nosocomial transmission or with a history of opioid intravenous drug use or blood transfusion) and
‘new’ hosts (both HIV-infected and HIV-negative MSM, detected during or shortly after acute HCV
infection phase, potentially using recreational drugs such as cocaine or cathinones). Our phylodynam-
ics analysis relies on an Approximate Bayesian Computation (ABC, [29]) framework that was recently
developed and validated [30].

Assuming an epidemiological model with two host types, ‘classical’ and ‘new’ (see the Methods),
we use dated virus sequences to estimate the date of onset of the HCV epidemics in ‘classical’ and
‘new’ hosts, the level of mixing between hosts types, and, for each host type, the duration of the
infectious period and the effective reproduction ratio (i.e. the number of secondary infections, [31]).
We find that the doubling time of the epidemics is one order of magnitude lower in ‘new’ than in
‘classical’ hosts, therefore emphasising the urgent need for public health action.

Results

The phylogeny inferred from the dated virus sequences shows that ‘new’ hosts (in red) tend to be
grouped in clades (Figure 1). This pattern suggests a high degree of assortativity in the epidemics
(i.e. hosts tends to infect hosts from the same type). The ABC phylodynamics approach allows us to
go beyond a visual description and to quantify several epidemiological parameters.

As for any Bayesian inference method, we need to assume a prior distribution for each parameter.
These priors, shown in grey in Figure 2, are voluntarily designed to be large and uniformly distributed
so as to be as little informative as possible. We also assume the date of the ‘new’ hosts epidemics to
be posterior to 1997 based on epidemiological data.

The inference method converges towards posterior distributions for each parameter, which are
shown in red in Figure 2. The estimate for the origin of the epidemic in ‘classical’ hosts is t0 =
1977 [1966; 1981] (numbers in brackets indicate the 95% Highest Posterior Density, or HPD). For the
‘new’ host type, we estimate the epidemic to have started in t2 = 2003 [2000; 2005].

We find the level of assortativity between host types to be high for ‘classical’ (a1 = 0.97 [0.91; 0.99])
as well as for ‘new’ hosts (a2 = 0.88 [0.70; 0.99]). Therefore, hosts mainly infect hosts from the same
type and this effect seems even more pronounced for ‘classical’ hosts.

The phylodynamics approach also allows us to infer the duration of the infectious period for each
host type. Assuming that this parameter does not vary over time, we estimate it to be 1.2 years
[0.40; 7.69] for ‘classical’ hosts (parameter 1/γ1) and 0.4 years [0.25; 0.78] for ‘new’ hosts (parameter
1/γ2).

Regarding effective reproduction numbers, i.e. the number of secondary infections caused by a
given host over its infectious period, we estimate that of ‘classical’ hosts to have decreased from

R
(1),t1
0 = 3.29 [1.2; 6.63] to R

(1),t2
0 = 1.47 [0.37; 2.67] after the introduction of the third generation

HCV test in 1997 (paramater t1). The inference on the differential transmission parameter indicates
that HCV transmission rate is ν = 7.97 [6.01; 9.90] times greater from ‘new’ hosts than from ‘classical’
hosts. By combining these results (see the Methods), we estimate the effective reproduction number

in ‘new’ hosts to be R
(2),t3
0 = 2.9 [0.81; 6.26].
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1978 1988 1998 2008 2018

Fig. 1. Phylogeny of HCV infections in the area of Lyon (France). The phylogeny present 213 leaves
where 145 of them are associated to the ‘classical’ hosts and 68 of them to the ‘new’ hosts. ‘Classical’ hosts are
in blue and ‘new’ hosts are in red. Sampling events correspond to the end of black branches. The phylogeny
was estimated and time-scaled using Bayesian inference (Beast2). See the Methods for additional details.
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Fig. 2. Parameter prior and posterior distributions. Prior distributions are in grey and posterior distri-
butions inferred by ABC are in red. The thinner the posterior distribution, the more accurate the inference.

To better apprehend the differences between the two host types, we compute the epidemic doubling
time (tD), which is the time for an infected population to double in size. tD is computed for each
type of host, assuming complete assortativity (see the Methods). We find that for the ‘classical’ hosts,

before 1997 t
(1),t1
D ≈ 8 months ([0.1; 2.63] years). After 1997, the pace decreases with a doubling time of

t
(1),t2
D ≈ 1.75 years ([0; 28.55] years). For the epidemics in the ‘new’ hosts, we estimate that t

(2),t3
D ≈ 51

days ([0; 2.73] years).
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Discussion

Over the last years, the area of Lyon (France) witnessed an increase in HCV incidence both in
HIV-positive and HIV-negative populations of men having sex with men (MSM) [14]. This increase
appears to be driven by sexual transmission and echoes similar trends in Amsterdam [32] and in
Switzerland [33]. A quantitative analysis of the epidemic is necessary to optimise public health in-
terventions. Unfortunately, this is challenging because the monitoring of the population at risk is
limited and because classical tools in quantitative epidemiology, especially incidence time series, are
poorly informative with such a heterogeneous population. To circumvent this problem, we used HCV
sequence data, which we analysed using phylodynamics. In order to account for host heterogeneity,
we extended and validated an existing Approximate Bayesian Computation framework [30].

From a public health point of view, our results have two major implications. First, we find a
strong degree of assortativity in both ‘classical’ and ‘new’ host populations. The virus phylogeny
does hint at this result (Figure 1) but the ABC approach allows us to quantify the pattern and to
show that assortativity may be higher for ‘classical’ hosts. The second main result has to do with
the striking difference in doubling times. Indeed, the current spread of the epidemics in ‘new’ hosts
appears to be at least comparable to the spread in the ‘classical’ hosts in the early 1990s before the
advent of the third generation tests. That the duration of the infectious period in ‘new’ hosts is in the
same order of magnitude as the time until treatment suggests that the majority of the transmission
events may be occurring during the acute phase. This underlines the necessity to act rapidly upon
detection, for instance by emphasising the importance of protection measures such as condom use and
by initiating treatment even during the acute phase [34]. A better understanding of the underlying
contact networks could provide additional information regarding the structure of the epidemics and,
with that respect, next generation sequence data could be particularly informative [35–37].

Some potential limitations of the study are related to the sampling scheme, the assessment of the
host type, and the transmission model. Regarding the sampling, the proportion of infected ‘new’ host
that are sampled is unknown but could be high. For the ‘classical’ hosts, we selected a representative
subset of the patients detected in the area but this sampling is likely to be low. However, the effect
of underestimating sampling for the new epidemics would be to underestimate its spread, which is
already faster than the classical epidemics. In general, implementing a more realistic sampling scheme
in the model would be possible but it would require a more detailed model and more data to avoid
identifiability issues. Regarding assignment of hosts to one of the two types, this was performed by
clinicians independently of the sequence data. The main criterion used was the infection stage (acute
or chronic), which was complemented by other epidemiological criteria (history of intravenous drug
use, blood transfusion, HIV status). Finally, the ‘classical’ and the ‘new’ epidemics appear to be
spreading on contact networks with different structures. However, such differences are beyond the
level of details of the birth-death model we use here, and would require a larger dataset for them to
be inferred.

In order to test whether the infection stage (acute vs. chronic) can explain the data better than the
existence of two host types, we developed an alternative model where all infected hosts first go through
an acute phase before recovering or progressing to the chronic phase. As for the model with two host
types, we used 3 time intervals. Interestingly, it was almost impossible to simulate phylogenies with
this model, most likely because of its intrinsic constrains on assortativity (both acute and chronic
infections always generate new acute infections).

To our knowledge, few attempts have been made in phylodynamics to tackle the issue of host
population heterogeneity. In 2018, a study used the structured coalescent model to investigate the
importance of accounting for so-called ‘superspreaders’ in the recent ebola epidemics in West Africa
[38]. The same year, another study used the birth-death model to study the effect of drug resistance
mutations on the R0 of HIV strains [39]. Both of these are implemented in Beast2. However,the
birth-death model is unlikely to be directly applicable to our HCV epidemics because it links the two
epidemics via mutation (a host of type A becomes a host of type B), whereas in our case the linking
is done via transmission (a host of type A infects a host of type B).
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Overall, we show that our ABC approach, which we validated for simple epidemiological models
such as Susceptible-Infected-Recovered [30], can be applied to more elaborate models that current
phylodynamics methods have difficulties to capture. Further increasing the level of details in the
model may require to increase the number of simulations but also to introduce new summary statistics.
Another promising perspective would be to combine sequence and incidence data. Although this
could not be done here due to the limited sampling, such data integration can readily be done with
regression-ABC.

Material and methods

Epidemiological data

The Dat’AIDS cohort is a collaborative network of 23 French HIV treatment centers covering
approximately 25% of HIV-infected patients followed in France (Clinicaltrials.gov ref NCT02898987).
The epidemiology of HCV infection in the cohort has been extensively described from 2000 to 2016
[40–42]. The incidence of acute HCV infection has been estimated among HIV-infected MSM between
2012 and 2016, among HIV-negative MSM enrolled in PrEP between in 2016-2017 [13] and among
HIV-infected and HIV-negative MSMs from 2014 to 2017 [14]. A réécrire pour ne citer que les données
de séquences que nous utilisons (voire un autre article si on en a besoin pour le labeling)

HCV sequence data

We included HCV molecular sequences of all MSM patients diagnosed with acute HCV genotype 1a
infection at the Infectious Disease Department of the Hospices Civils de Lyon, France, and for whom
NS5B sequencing was performed between January 2014 and December 2017 (N = 68). HCV genotype
1a isolated from N = 145 non-MSM, HIV-negative, male patients of similar age were analysed by
NS5B sequencing at the same time for phylogenetic analysis. This study was conducted in accordance
with French ethics regulations. All patients gave their written informed consent to allow the use of
their personal clinical data. The study was approved by the Ethics Committee of Hospices Civils de
Lyon.

HCV testing and sequencing

HCV RNA was detected and quantified using the Abbott RealTime HCV assay (Abbott Molecular,
Rungis, France). The NS5B fragment of HCV was amplified between nucleotides 8256 and 8644 by
RT-PCR as previously described and sequenced using the Sanger method. Electrophoresis and data
collection were performed on a GenomeLabTM GeXP Genetic Analyzer (Beckman Coulter). Consensus
sequences were assembled and analysed using the GenomeLabTM sequence analysis software. The
genotype of each sample was determined by comparing its sequence with HCV reference sequences
obtained from GenBank.

Nucleotide accession numbers

All HCV NS5B sequences isolated in MSM and non-MSM patients reported in this study were
submitted to the GenBank database. The list of Genbank accession numbers for all sequences is
provided in Appendix.

Dated viral phylogeny

To infer the time-scaled viral phylogeny from the alignment we used a Bayesian Skyline model in
BEAST v2.4.8 [43]. The general time reversible (GTR) nucleotide substitution model was used with
a strict clock rate fixed at 10−3 based on data from Ref. [44] and a gamma distribution with four
substitution rate categories. The MCMC was run for 100 million iterations and samples were saved
every 5,000 iterations. We selected the maximum clade credibility using TreeAnnotator BEAST2
package. The date of the last common ancestor was estimated to be 1977.67 with a 95% Highest
Posterior Density (HPD) of [1960.475; 1995.957].
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Tab. 1. Prior distributions for the birth-death model parameters over the three time intervals. t0
is the date of origin of the epidemics in the studied area, t1 is the date of introduction of 3rd generation HCV
tests, t2 is the date of emergence of the epidemic in ‘new’ hosts and tf is the time of the most recent sampled
sequence.

Interval γi ν R
(1)
0 ai

[t0, t1] Unif(0.1, 4) 0 Unif(0.9, 15) Unif(0, 1)
[t1, t2] Unif(0.1, 3)
[t2, t3] Unif(0, 10)

Epidemiological model and simulations

We assume a Birth-Death model with two hosts types with ‘classical’ hosts (numbered 1) and new
hosts (numbered 2). This model is described by the following system of ordinary differential equations
(ODEs):

dI1
dt

= a1βI1 + (1− a2)νβI2 − γ1I1 (1a)

dI2
dt

= a2βνI2 + (1− a1)βI1 − γ2I2 (1b)

In the model, transmission events are possible within each type of hosts and between the two types of
hosts at a transmission rate β. Parameter ν corresponds to the transmission rate differential between
classical and new hosts. Individuals can be ‘removed’ at a rate γ1 from an infectious compartment
(I1 or I2) via infection clearance, host death or change in host behaviour (e.g. condom use). The
assortativity between host types, which can be seen as the percentage of transmissions that occur
with hosts from the same type, is captured by parameter ai.

The effective reproduction number (denoted R0) is the number of secondary cases caused by an
infectious individual in a fully susceptible host population [31]. We seek to infer the R0 from the

classical epidemic, denoted R
(1)
0 and defined by R

(1)
0 = β/γ1, as well as the R0 of the new epidemic,

denoted R
(2)
0 and defined by R

(2)
0 = νβ/γ2 = νR

(1)
0 γ1/γ2.

The doubling time of an epidemics (tD) corresponds to the time required for the number of infected
hosts to double in size. It is usually estimated in the early stage of an epidemics, when epidemic growth
can assumed to be exponential. To calculate it, we assume perfect assortativity (a1 = a2 = 1) and
approximate the initial exponential growth rate by β − γ1 for ‘classical’ hosts and νβ − γ2 for ‘new’

hosts. Following [45], we obtain t
(1)
D = ln(2)/(β − γ1) and t

(2)
D = ln(2)/(νβ − γ2).

We consider three time intervals. During the first interval [t0, t1], t0 being the year of the origin of
the epidemic in the area of Lyon, we assume that only classical hosts are present. For t0, we use the
lower and upper bounds of the 95% HPD of the inferred date of the last common ancester by Beast as
the lower and upper bound of a uniform prior. The second interval [t1, t2], begins in t1 = 1997.3 with

the introduction of the third generation HCV tests, which we assume to have affected R
(1)
0 through

the decrease of the transmission rate β. Finally, the ‘new’ hosts appear during the last interval [t2, tf ],
where t2, which we infer, is the date of origin of the second outbreak. The final time (tf ) is set by the
most recent sampling date in our dataset (2018.39). The prior distributions used are summarized in
Table 1 and shown in Figure 2.

To simulate phylogenies, we use a simulator implemented in R via the Rcpp package. This is done
in a two-step procedure. First, epidemiological trajectories are simulated using the compartmental
model in equation 1 and Gillespie’s stochastic event-driven simulation algorithm [46]. The number of
individuals in each compartment and the reactions occurring through the simulations of trajectories,
such as recovery or transmission events, are recorded. Using the target phylogeny, we know when
sampling events occur. For each simulation, each sampling date is randomly associated to a host
compartment using the observed fraction of each infection type (here 68% of the dates associated with
’classical’ hosts type and 32% with ’new’ hosts). Once the sampling dates are added to the trajectories,
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we move to the second step, which involves simulating the phylogeny. This step starts from the
last sampling date and follows the epidemiological trajectory through a coalescent process, that is
backward-in-time. Each backward step in the trajectory can induce a tree modification: a sampling
event leads to a labelled leaf in the phylogeny, a transmission event can lead to the coalescence of two
sampled lineages or to no modification of the phylogeny (if one of the lineages is not sampled).

We implicitly assume that the sampling rate is low, which is consistent with the limited number
of sequences in the dataset. We also assume that the virus can still be transmitted after sampling.

We simulate 71, 000 phylogenies from known parameter sets drawn in the prior distributions shown
in Table 1. These are used to perform the rejection step and build the regression model in the
Approximate Bayesian Computation (ABC) inference.

ABC inference

Summary statistics Phylogenies are rich objects and to compare them we break them into summary
statistics. These are chosen to capture the epidemiological information of interest. In particular,
following an earlier study, we use summary statistics from branch lengths, tree topology, and lineage-
through-time (LTT) [30].

We also compute new summary statistics to extract information regarding the heterogeneity of
the population, the assortativity, and the difference between the two R0. To do so, we annotate each
internal node by associating it with a probability to be in a particular state (here the host type,
‘classical’ or ‘new’). We assume that this probability is given by the ratio

P (Y ) =
number of leaves labelled Y

number of descendent leaves
(2)

where Y is a state (or host type). Each node is therefore annotated with n ratios, n being the number
of possible states. Since in our case n = 2, we only follow one of the labels and use the mean and the
variance of the distribution of the ratios (one for each node) as summary statistics.

In a phylogeny, cherries are pairs of leaves that are adjacent to a common ancestor. There are
n(n+ 1)/2 categories of cherries. Here, we compute the proportion of homogeneous cherries for each
label and the proportion of heterogeneous cherries. We also consider pitchforks, which we define as
a cherry and a leaf adjacent to a common ancestor, and introduce three categories: homogeneous
pitchforks, pitchforks whose cherries are homogeneous for a label and whose leaf is labelled with
another trait, and pitchforks whose cherries are heterogeneous.

The Lineage-Through-Time (LTT) plot displays the number of lineages of a phylogeny over time.
In this plot, the number of lineages is incremented by one every time there is a new branch in the
phylogeny, and is decreased by one every time there is a new leaf in the phylogeny. We use the ratios
defined for each internal node to build a LTT for each label type, which we refer to as ‘LTT label
plot’. After each branching event in phylogeny, we increment the number of lineages by the value of
the ratio of the internal node for the given label. This number of lineages is decreased by one every
time there is a leaf in the phylogeny. In the end, we obtain n = 2 LTT label plots.

Finally, for each label, we compute some of our branch lengths summary statistics on homogeneous
clades and heterogeneous clades present in the phylogeny. Homogeneous clades are defined by their
root having a ratio of 1 for one type of label and their size being greater than Nmin. For heterogeneous
clades, we keep the size criterion and impose that the ratio is smaller than 1 but greater than a
threshold ε. After preliminary analyses, we set Nmin = 4 leaves and ε = 0.7. We therefore obtain a
set of homogeneous clades and a set of heterogeneous clades, the branch lengths of which we pool into
two sets to compute the summary statistics of heterogeneous and homogeneous clades. Note that we
always select the largest clade, for both homogeneous and heterogeneous cases, to avoid redundancy.

Regression-ABC We first measure multicollinearity between summary statistics using variance in-
flation factors (VIF). Each summary statistic is kept if its VIF value is lower than 10. This stepwise
VIF test leads to the selection of 88 summary statistics out of 234.
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We then use the abc function from the abc R package to infer posterior distributions generated
using only the rejection step. Finally, we perform linear adjustment using an elastic net regression.

The abc function performs a classical one-step rejection algorithm [29] using a tolerance parameter
Pδ, which represents a percentile of the simulations that are close to the target. To compute the
distance between a simulation and the target, we use the Euclidian distance between normalized
simulated vector of summary statistics and the normalized target vector.

Prior to linear adjustment, the abc function performs smooth weighting using an Epanechnikov
kernel [29]. Then, using the glmnet package in R, we implement an elastic-net (EN) adjustment, which
balances the Ridge and the LASSO regression penalties [47].

In the end, we obtain posterior distributions for t0, t2, a1, a2, ν, γ1, γ2, R
(1),t1
0 and R

(1),t2
0 using

our ABC-EN regression model with Pδ = 0.1.

Parametric bootstrap and cross validation Our parametric bootstrap validation consists in
simulating 5, 000 additional phylogenies from parameter sets drawn in posterior distributions. We
then compute summary statistics and perform a principal component analysis (PCA) on the vectors
of summary statistics for the simulated and for the target data. If the posterior distribution is
informative, we expect the target data to be similar to the simulated phylogenies. On the contrary,
if the posterior distribution can generate phylogenies with a variety of shapes, the target data can be
outside the cloud of simulated phylogenies in the PCA.

In order to assess the robustness of our ABC-EN method to infer epidemiological parameters of
our BD model, we also perform a ‘leave-one-out’ cross-validation as in [30]. This consists in inferring
posterior distributions of the parameters from one simulated phylogeny, assumed to be the target
phylogeny, using the ABC-EN method with the remaining 60, 999 simulated phylogenies. We run the
cross-validation 100 times with 100 different target phylogenies. We consider three parameter distri-
butions θ: the prior distribution, the prior distribution reduced by the feasibility of the simulations
and the ABC inferred posterior distribution. For each of these parameter distributions, we measure
the median and compute, for each simulation scenario, the mean relative error (MRE) such as:

MRE =
1

100

100∑

i=1

| θi
Θ
− 1 | (3)

where Θ is the true value.
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C. Chidiac, T. Ferry, F. Ader, F. Biron, A. Boibieux, P. Miailhes, T. Perpoint, I. Schlienger, J. Lippmann,
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Abstract We introduce an extension of our fragment-based method for ssRNA-protein
docking as it is still a challenging difficulty in docking. It is dedicated to hairpins and makes
use of geometrical features of this secondary structure. An initial evaluation establishes
that it is promising and could make it possible to overcome the limitations of the state-of-
the-art fragment-based methods.

Keywords RNA hairpin, protein, fragment-based docking

1 Introduction

Protein-RNA interactions are involved in many biological processes, including cell regulation [1]
and diseases [2,3]. In that context, the structures of the complexes are major knowledge sources.
However, their experimental inference is difficult, when possible [4]. As usual, the approach of choice
to overcome this limitation is modeling. A difficulty arises when the interaction involves a single-
stranded secondary structure of the RNA: single-stranded RNA is highly flexible and consequently
difficult to model. This observation led to the introduction of two methods, one based on molecular
dynamics [5] and ours, based on the assembling of structural fragments of RNA docked on the protein
surface [6]. The current implementation of these methods, requiring the knowledge either of the exact
coordinates of 2 nucleotides [5] or only of anchoring points on the protein surface [6], limits their
applicability to few protein families. In this article, we introduce an extension of our method relaxing
this requirement in the specific case when the single-stranded RNA is the loop of a hairpin. The
additional pieces of information exploited to obtain this improvement are intervals on the distances
between the nucleotides at the endpoints of the loop (intervals governed by the distances between the
two nucleotides closing the loop). Thus, biological information is not needed except the identification of
the nucleotides of the closure of the hairpin, which can be obtained by secondary structure prediction.

The organization of the paper is as follows. Section 2 introduces our method. Section 3 is devoted
to its experimental evaluation. At last, we draw conclusions and outline our ongoing research in
Section 4.

2 Methods

In this section, we first give a brief description of our fragment-based method, so as to highlight
afterwards the specificities of the original contribution: the dedication to hairpins.

2.1 Fragment-Based Docking

Our fragment-based method consists of four main steps. To make the paper self-contained, they are
now briefly summarized (details are available in [7]). First, for each of the 64 possible trinucleotides,
hereafter referred to as motifs, a library containing all experimentally observed 3D structures is built,
by browsing the Protein Data Bank (PDB [8]). This initial set is then refined by means of a clustering
method, to retain a subset, ideally of minimal cardinality, “covering” it with a Root Mean Square
Deviation (RMSD) below 1Å (1Å-net). The ensemble of 3D structures obtained for each of the 64
motifs is named conformers. With these 64 libraries at hand, the sequence of interest is first cut into
trinucleotides with a step of one (so that two consecutive trinucleotides overlap by two nucleotides).
For each of the corresponding motifs, the whole refined library of 3D structures is docked on the
protein. This rigid body docking, using ATTRACT [9], generates for each trinucleotide a set of poses.
Then, the assembly consists of searching possible paths in a directed graph. Its vertices are the poses
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and two successive poses are connected by an edge provided that the RMSD between their two shared
nucleotides is below a given threshold Toverlap. The output at this level is a list of chains of poses
scored by ATTRACT, that cover the full RNA sequence. The last step consists in an ordering of
the list. Two options are implemented. The first one is based on the geometric mean of the ranks
of the poses [6]. The second one is a heuristic considering that the best chains are probably made of
poses that participate in many chains, for probabilistic and/or entropic reasons [7]. It uses a forward-
backward algorithm to count the number of chains in with each pose participates, then selects for
every fragment the most connected poses and assemble only those.

In this previous framework, the anchorage takes the form of the knowledge of an interaction
between two given nucleotides and two given residues of the protein.

2.2 Dedication to Hairpins

A feature of hairpins useful for modeling is the knowledge of the distance between the nucleotides at
the endpoints of the loop [10]. Our dedicated method is based on the conjecture that an appropriate
exploitation of this feature can prove enough to constrain the assembly so as to relax the initial
need for anchoring points. The implementation is based on an enrichment of the graph described in
Section 2.1. A new type of edge is introduced, to connect poses of the last and first fragment. This
connection is added when the Euclidean distance Dclosure between the phosphate of first nucleotide of
the first fragment and the phosphate of the last nucleotide of the last fragment belongs to the interval
11.8-24.7Å (interval observed in the benchmark). The new graph is depicted in Figure 1.

Fig. 1. Graph dedicated to hairpins. This graph represents the connection between the poses of a chain of 6 nucleotides.

There are 5 poses for each fragment. If two consecutive poses are overlapping there is an edge between them. A complete chain

has 4 poses, one for each fragment.

The set of chains considered here is smaller than in the general case, since it retains only those
included in a cycle of the new graph.

3 Assessment of the New Method

To assess the method, a data set of hairpin-protein complexes was produced.

3.1 Selection of a Benchmark

The algorithm for this derivation is made up of two main steps. It takes in input the set of all
available non-redundant experimental structures of hairpin-protein complexes. For every hairpin, the
docking of all the conformers of all the motifs present in its loop is performed on the corresponding
protein using ATTRACT. This leads to retaining only the complexes for which all fragments have at
least one near native pose. A near native pose is a pose whose RMSD with the native (experimental)
position is below 3Å. The second step is a refinement that consists in doing the docking again with a
subset of conformers structurally close enough to the native position. This corresponds to eliminating
conformers that are structurally too different from the native position to be a near native pose. At
this level, the criterion to retain a complex is the following one: for every fragment, the rank of
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the ATTRACT score of the first-ranked near native pose must be below a number of pose Npose.
Obviously, this step, involving pieces of information in principle unknown, turns our experimental
approach into a proof of concept.

The initial set of hairpin-protein complexes is obtained by application of NAfragDB [11]. It contains
19 complexes. At the first step of the algorithm, one obtains roughly 10 · 103 poses per conformer,
i.e., 30 · 106 poses per fragment, given the fact that the libraries for the motifs contain on average
3000 conformers. At this level, only 2 complexes are selected: 5UDZ [12] and 1RKJ [13]. For both
of them, at least one fragment has the top-ranked near native pose at a rank higher than 106. This
explains, at least for our data set, the need for the second step of the algorithm, to keep a chance to
obtain a relevant assembly. This second step is parameterized as follows. For every motif, a subset of
conformers is created that contains only the ten closest (according to the RMSD) to the experimental
structure after optimal fitting. On the contrary, the number of poses per conformer is increased to
50 ·103, so that the new number of poses per fragment is 500 ·103. Table 1 provides the set of hairpins
selected at the first step, with the corresponding docking results.

frag1 frag2 frag3 frag4 frag5

5UDZ
first docking 5743309 423163 15403 27578 2138595
second docking 90424 2114 285 1334 34291

1RKJ
first docking 1382237 1110963 13187 599859
second docking 7056 14949 191 1275

Tab. 1. First rank for a near native pose for the fragments of the two hairpins.

The figures in Table 1 establish that performing the assembly for 5UDZ and 1RKJ requires to
consider a maximum of 6 · 1024 and 5 · 1016 possible chains respectively. Those numbers are based on
the following computation. For each fragment of each sequence, the number of poses considered is the
rounded largest value among the ranks of the first-ranked near native poses (here 90·103 for 5UDZ and
15 · 103 for 1RKJ). This arbitrary choice corresponds to a reasonable assumption on what information
could be inferred from data. With the processing for 5UDZ being the most time consuming, and
currently underway, in the sequel, the results are provided for 1RKJ only.

3.2 Assessment for the Hairpin of 1RKJ

The sequence of the hairpin is UCCCGA (thus four fragments). The three parameters to be set
to derive the chains are Dclosure, Npose, and Toverlap. The two first values have been given above. As
for the third one, the value of 2.6Å was retained since it is the smallest value ensuring to generate a
chain connecting near native poses only. For this parameterization, the number of chains is 47617288.
In that set we obtain 732 acceptable solutions (with an RMSD below 5Å) and 122 good solutions
(RMSD below 3Å), with a best model at 1.9Å. The best one and the experimental one are represented
in Figure 2.

Thus, the method appears sensitive, but not specific enough, which calls for an investigation of
the set of chains. Section 2.1 has introduced the two methods implemented to sort it. We now discuss
their effectiveness. When using as criterion the geometric mean of the ranks of the poses, the smallest
rank of a solution among the 732 satisfactory ones is 4783648. This is close to the top 10%, but leaves
too many false positives above.

frag1 frag2 frag3 frag4
All poses 206742 502600 654520 1105597
Poses in a solution 5701 16849 366 1672
Average for all poses 11985 15830 24865 20151

Tab. 2. Highest number of chains in which a pose of the 47617288 chains (all poses) and a pose of the 732
solutions (poses in a solution) are involved. The last line is the average of chains for all poses.

The second criterion is evaluated by looking at the number of chains in which poses are involved
(see Table 2). We found that the poses which are involved in good chains are not involved in more
chains than the rest of the poses.
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Fig. 2. Poses (in colors) composing the best chain with respect to RMSD with the native chain (in white).
Frag1 in green, frag2 in blue, frag3 in orange, frag4 in red.

In order to decrease the number of retained chains, we tried to narrow to 10-15Å the interval for
the distance Dclosure (which was initially set to 11.8-24.7Å), since this distance is 13.2Å in 1RJK.
This resulted in a decrease of the cardinality of more than 30%, obtaining 32765494 chains, but also
decreasing the number of good solutions from 732 to 517. It did not increase the percentage of correct
solutions in the chains.

4 Conclusions and Ongoing Work

Given the difficulty of the task tackled, our initial results appear promising. The knowledge of the
secondary structure seems to be relevant enough to replace the knowledge of the anchoring points.
The results were better with anchoring points, with a higher percentage of correct chains and a more
accurate best chain in most cases [6]. This was to be expected since distance and position represent
a stronger constraint than distance only. Indeed, this knowledge allowed to assemble and evaluate all
the possible chains, without our previous heuristic pre-filtering of the most-connected poses [7], and
to obtain a more precise model (1.9Å, instead of 3.6-5.7Å). On the other hand, the hypothesis of a
loop closure being weaker than that of the exact position of the chain extremities on the protein, the
current approach retains more false positives than the anchored docking did (more than 1% correct
models in the assembled chains).

An improvement of our method should result from a change of target for the distance. The
distance between the phosphate of the first nucleotide and the sugar of the last nucleotide seems to
be a stronger constraint. The interval of distance is 13.7-21.6Å, which is tighter than the phosphate-
phosphate interval (see Section 2.2). The variance for the phosphate-sugar distance, 2.4, is smaller than
for the phosphate-phosphate distance (5.9). These values are observed on our bigger benchmark of 191
structures. Currently, the limiting factor of the new method is still the docking of the trinucleotides
by ATTRACT, as in most complexes, not all fragments have at least one near-native pose. A major
reason for this problem is inherent to the fragment-based approach: minimizing the interaction energy
for such small fragments is not equivalent to minimizing this energy for the whole sequence. Another
one, but directly related, is the inadequation of ATTRACT scoring function for ssRNA, developed on
protein- double-stranded RNA complexes. Thus, our current research consists in developing a new
scoring function specific for ssRNA fragments. In parallel, we consider an addition to the distance
constraint, to check if the loop-closing nucleotides have specific geometries with the base-pairing of
the neighbor nucleotides.
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Finally, a natural extension of this work consists in applying its principle to different RNA sec-
ondary structures (known or predicted), with the aim of the global docking of the complex. Eventually,
the constraint should not necessarily involve the knowledge of the secondary structure, but could ben-
efit from any knowledge of distance between two nucleotides.
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RNAs can interact and form complexes with catalytic functions. This is for example the case of the ribosome, 
composed of the 5S, 5.8S, 18S and 28S RNAs in eukaryotes, that is responsible of the translation of messenger 
RNAs into proteins. The ribosome is also composed of proteins, but it is the RNAs that are responsible in the 
catalytic activity of the complex. The prediction of RNA complexes, and more precisely the prediction of their 
structure, is therefore an import task, and very few tools have been proposed for this purpose.  

Recently, we have proposed a new method, called RCPred, that allows to predict RNA complexes secondary 
structures with pseudoknots, including the so-called “external” pseudoknots, which are pseudoknots occurring 
in RNA-RNA interactions. RCPred is also able to return several solutions, optimal and sub-optimal ones.  This 
is an important point since, in the one hand, RNAs can have several structures, and on the other hand, the real 
structure does not correspond always to the solution of minimum free energy. 

Our method is based on an original approach that takes advantage of the high number of RNA secondary 
structures and RNA-RNA interaction prediction tools: the problem of RNA complex prediction as the 
determination of the best combination (according to the free energy) of RNA secondary structures and RNA-
RNA interactions predicted upstream using existing tools. We model those predicted structures and 
interactions as a graph in order to have a combinatorial optimization problem that is a constrained maximum 
weight clique problem (MWCP). We propose a heuristic based on Breakout Local Search to solve this problem, 
and which is able to return several solutions.  

Users can have some information on the structure of interest that can help its prediction. These can be patterns 
like helices, pseudoknots, terminal loops, internal loops, multiple loops. They can also be in possession of 
experimental probing data such as SHAPE data.  

Several tools have been developed for integrating user information or probing data to improve RNA secondary 
structure. However, to our knowledge, no method predicting RNA complexes allows to consider user 
constraints or experimental probing data. We developed a new version of our method based on the MWCP for 
RNA complexes secondary structure prediction. In order to integrate probing data and user constraints along 
with the free energy criteria, our new method, called C-RCPred, has extended the previously used heuristic to 
approximatively solve a three-criteria variant of the maximum clique problem. 

We have evaluated our methods on a large number of complexes, which shows competitive results compared 
to the methods of the state of the art. Note that RCPred as well as C-RCPred are, to our knowledge, the only 
one tools that allow to predict (internal and external) pseudoknots and to return sub-optimal solutions. 

RCPred and C-RCPred have been implemented as interactive tools. They are available as web servers and on 
EvryRNA platform (http://EvryRNA.ibisc.univ-evry.fr).  
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Abstract The Bioinformatics and BioMarquers (Bio2M) platform is dedicated mainly to
the analysis of RNA-Seq data obtained from next-generation sequencer (NGS). As others
platforms, we can do gene expression analysis, but also, transcript assembly for coding-
protein gene and long non-coding gene already annotated or new. We are able also to look
for rare expression variant splice transcripts and chimera transcripts. We are also able to
search in large data bank all of these kind of transcripts by using kmer methods. It will
take few minutes for about 1000 samples.

The platform is also involved in bioinformatics training for biologist, from R beginners,
RNA-Seq data analysis to mutation research.

Keywords NGS, RNA-Seq, Chimera, lncRNA, kmers.

1 Introduction

The aim of this platform is to provide bioinformatics analysis to researcher in the NGS field. We
have an extensive range of expertise in the RNA-Seq analysis data. The platform is located at the
Institute of Regenerative Medicine and Biotherapies (IRMB) in Montpellier. It has exchange with
different laboratories around Montpellier in the academic or private research.

2 Actitivy

Computational techniques are used to analyze high-throughput sequences data. In the last 10
years, the sequencing technology has grown faster than the computational biology, which makes more
difficult and complex to analyze of all generated data. Therefore, the software to process sequencing
data evolved rapidly and require a lot of expertise before using them. The team members are associated
with a research team which analyze, develop pipeline and software dedicated to the RNA-Seq data.

Major services provided by the platform:

1. Help to design experiment for NGS

2. RNA-Seq analysis

— Quality check of sequencing data: FastQC, kmerTool
— Alignment on reference sequence: CRAC, STAR, Hisat2
— Differential gene expression based on k-mers: DE-kupl[1] , CountTags
— Differential gene expression based on transcripts or genes sequence: Kallisto, SLEUTH,

DESeq2, EdgeR
— Search for chimeric genes and/or RNA: ChimCT[2,3], STARFusion
— Transcripts assembly for new genes, unannotated genes, coding genes or no-coding genes

(lncRNA): Stringtie

3. DNA-Seq analysis

— Variation and mutation search: CracTools, Hisat2/Freebayes

4. Specific analysis on demand

The research team associated with the platform also develop new software based on kmer search,
which permits to look in large sample data libraries (more than 1000 samples) for gene or transcript
expression, chimera transcript or other transcriptional events.
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3 IT infrastructure

Computational biology, in the NGS field, require huge computer resources for a wide range of com-
putationally intensive tasks. The platform shares IT infrastructure with other team in our building.
Different servers are available for services like web server as well as the IT management. The low and
small intensive analysis are done on a local cluster (about 20 nodes and some with large memory).
This cluster, as IT managed entirely by the team, give the freedom to the team to do what they want.

For large computer intensive tasks, the team use the high-throughput computing (HPC) cluster
provided by the Meso@LR (https://meso-lr.umontpellier.fr/) located in Montpellier.

All the pipeline analysis are under control of a bioinformatics wokflow management system (snake-
make) and use singularity container that can be run directly in any HPC cluster available. All results
and files are given to the scientist via a web site, with restricted access for each projects. All gener-
ated files are under versioning control to track the provenance of the workflow execution results and
to certify for quality control.

4 Training

The platform manage few training in the bioinformatics fields. Theses training are designed prin-
cipally towards biologist that are interested to understand what is a behind a bioinformatics workflow.

The next one will be about how to find a mutation in a gene panel or exome experiment. The
purpose of this training is to learn:

— how to do control quality check on fastq sequences
— how to do the mapping on reference sequences
— how to do variant calling
— how to do variant filtering and why
Theses training are organized once or two per year, generally between March and June of each year,

in collaboration with the Mobidic bioinformatics team of Montpellier CHU and Seq.one corporate. The
expertise require for these courses are provided by associate professor and professor of Montpellier
University, and researchers from INSERM.
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Abstract Rapid and accurate clinical diagnosis from Mass Spectrometry (MS) remains
highly challenging. Some machine learning (ML) approaches, including Support Vector
Machine or Random Forest for instance, have been investigated for this purpose. An im-
portant component of this development is the building of effective classification models
with MS data. These ML algorithms require time-consuming preprocessing steps such as
baseline correction, denoising, and spectra alignment to remove non-sample-related data
artifacts. They also depend on the laborious extraction of features, making them unsuitable
for rapid analysis. Convolutional Neural Networks (CNNs) have been found to perform
well under such circumstances since they can learn efficient representations from data
without the need for preprocessing. However, their effectiveness drastically decreases when
the number of MS spectra available is small, which is a common situation in medical ap-
plications. Transfer learning strategies can extend an accurate representation model learnt
from a large dataset to a smaller one. We first investigated transfer learning by a 1D-
CNN model designed to classify MS data and then we developed a new cumulative learning
method when transfer learning was not powerful enough as in cases of low-resolution or
data heterogeneity. What we proposed is to train the same model through several clas-
sification tasks over various small datasets in order to accumulate MS knowledge in the
resulting representation. Using a cumulative learning approach resulted in a classification
accuracy exceeding 98% for 1D clinical canine sarcoma cancer cells, human ovarian cancer
serums, and pathogenic microorganisms. We showed for the first time the use of cumu-
lative representation learning using datasets generated in different biological contexts, on
different organisms, and acquired by different instruments. Our approach thus illustrates
a promising strategy for improving classification accuracy when only small numbers of
samples are available as prospective cohorts.

Keywords Transfer learning, Cumulative learning, CNNs

1 Introduction

Accurate and rapid identification of cancer tissues has a crucial impact on medical decisions. Con-
ventional histopathological examinations are resource intensive and time-consuming, requiring 30–45
minutes per sample processed and the presence of a skilled pathologist [1]. A similar need exists in
the treatment of infections, where accurate identification of microorganisms responsible for human
infections is important to ensure the most appropriate and effective treatment for a patient, in the
shortest possible time [2]. In this context, it is essential to use tools which provide accurate identifica-
tion and correct interpretation of the analyzed samples. Mass spectrometry (MS) is particularly useful
for such purposes since it provides non-targeted molecular information on the millisecond time scales.
Its sensitivity, reproducibility, and suitability for analyzing complex mixtures are well established.
New methods of analysis of crude samples are making diagnostics even faster and easier. Simultane-
ously, the development of MS-based bacterial biotyping clearly illustrates the value of MS in clinical
applications [3].

For cancer-related diagnostics and microbial pathogen identifications, many popular classification
Machine Learning models, such as Support Vector Machine (SVM) [4], Random Forest (RF) [5], and
Linear Discriminant Analysis (LDA) [6] have been already used and compared [7] [8]. However, these
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methods are applied generally to preprocessed MS data, and differences in preprocessing pose a major
challenge to any comparison of MS data analysis. Classification model design for rapid applications
thus becomes a highly complex task, since it must follow a workflow involving several interdependent
preprocessing steps. Data preprocessing is used to improve the robustness of subsequent multivariate
analysis and to increase data interpretability by correcting issues associated with MS acquisition [9].
Preprocessing quality is important, and if inadequate, can lead to biased or biologically irrelevant
conclusions [10]. Several factors, often related to the experimental conditions including sample het-
erogeneity, sample processing and MS analysis (e.g. electronic noise, instrument calibration stability,
temperature stability,. . . ) can contribute to spectral variations. In addition, the curse of dimension-
ality, must be avoided. This is a well-known problem that arises when analyzing MS data having
a large number of dimensions, and is lessened using data dimensionality reduction techniques [11].
Various MS classification workflows have been developed so far, but there is no golden standards for
the optimal choice of parameters at each individual step, for their quality evaluation or for their best
combination [12]. It has been shown that the choice of preprocessing parameters for a specific dataset
can decrease the performance of the classification model and that preprocessing may be effective only
for that dataset and not any others generated from different instruments or with different settings
[13]. A standard pipeline for MS classification using SVM, RF or LDA must include these preprocess-
ing steps and must consider aforementioned constraints, which makes such algorithms unsuitable for
rapid analysis. Convolutional Neural Networks (CNNs) are one of the most successful deep learning
architectures designed to learn representation from an input signal with different levels of abstraction
[14]. To address rapid clinical MS data classification tasks, CNNs represent an attractive approach of-
fering various advantages over conventional Machine Mearning algorithms. These include significantly
higher accuracy, effectiveness on raw spectrum classification even in presence of signal artifacts (noise,
baseline distortion, etc.) and hence discards the need for data preprocessing before classification [15],
integration of features extraction with classification and without a feature-engineering step since all
layers are trained together, and finally exploitation of spatially stable local correlations by enforcing
the local connectivity patterns [16]. However, CNNs classification efficiency trained using a small num-
ber of spectra drops rapidly [15]. Unfortunately, many real-world applications do not have access to
big training sets because of data scarcity, or because of the difficulty and expense in labeling data [17].
In medicine, it is often the case that some samples are only accessible in limited amounts, especially
for rarer diseases and pathologies (e.g. patient biopsies, at advanced stage of infection). Therefore the
size of clinical datasets is constrained by data availability and by the experiments complexity and high
cost [18]. For such applications, transfer learning has emerged as an interesting approach [19]. This
technique is applicable to small datasets and therefore requires fewer computational resources while in-
creasing the classification accuracy as compared to CNNs models built from scratch. Transfer learning
is a two-step process. An accurate data representation is first learned, by training a model on a dataset
containing a large amount of annotated data covering many categories. This representation (i.e. its
model weights) are then reused to build a new model based on a smaller annotated dataset containing
fewer categories, by training only the final decision layer(s) or by also fine-tuning the whole model with
the reduced set of categories. Transfer learning has proven useful in many engineering areas including
computer vision, robotics, image classification and natural language processing (NLP) applications
[20]. With MS data, it would use basic similarities in spectral shape gathered from different datasets
and adapted to address new classification problems. This has yet to be explored for 1D spectral data,
since no 1D spectral dataset as large as the ImageNet database in the 2D image analysis domain is
available [21]. Most MS classification by CNN is therefore focused on MS 2D imaging analysis [22]
[23] [24]. We have found no description of their use or of transfer learning or representation learning in
conjunction with 1D MS data. The aim of this study was to build CNNs-based classification models
for 1D mass spectra by transfer learning or representation learning. Pattern recognition models were
built using small clinical datasets generated for the diagnosis of cancers or microbial infections.

2 Methods

2.1 Datasets

We evaluated our proposed approach on independent MS datasets (Table 1):

Paper 216

97



MS instrument Dataset Classes # spectra Description

T
a
rg

e
t
d
o
m
a
in

d
a
ta

Synapt G2-S Q-TOF
(Waters, SpiderMass)

Canine sarcoma

Normal
Myxosarcoma
Fibrosarcoma

Hemangiopericytoma
Malignant peripheral nerve tumor

Osteosarcoma
Undifferentiated pleomorphicsarcoma

Rhabdomyosarcoma
Splenic fibrohistiocytic nodules

Histiocytic sarcoma
Soft tissue sarcoma

Gastrointestinal stromal sarcoma
Total

482
60
404
134
60
339
376
66
63
105
69
70

2228

Contained 1 normal and 11 heterogeneous sarcoma types
as described previously [25]

Hybrid quadrupole
(QSTAR pulsar I)

Human ovary cancer 1
Normal
Cancer
Total

95
121
216

Contained two classes of low-resolution spectra, normal and cancerous
publicly available at home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

Synapt G2-S Q-TOF
(Waters, SpiderMass)

Microorganisms

Staphylococcus aureus
E.coli D31

Pseudomonas aeruginosa
Enterococcus faecalis

Candida albicans
Total

26
26
24
19
23
119

Contained a five human pathogen
as described previously [26]

S
o
u
rc
e
d
o
m
a
in

d
a
ta PBSII SELDI-TOF Human ovary cancer 2

Normal
Cancer
Total

91
162
253

Contained two classes of high-resolution spectra , normal and cancerous
publicly available at home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

Rapiflex MALDI-TOF
(Bruker)

Rat brain
Gray matter
White matter

Total

4635
5465
10100

Contained spectra of rat gray and white brain matter

Synapt G2-S Q-TOF
(Waters, SpiderMass)

Beef liver
Positive mode
Negative mode

Total

1372
1265
2637

Contained two types of spectra of healthy beef liver samples,
one acquired in positive and the other in negative ion mode

Tab. 1. Description of datasets

We focused on lipids and metabolites as the main species observed in the 100-1.600 mass/charge
(m/z) range with our MS instrument, namely the SpiderMass. Multiple studies have shed light on the
role of lipid metabolism deregulation in cancer development [27]. Recent microbial taxonomy studies
have also demonstrated the possibility of biotyping pathogens using their lipid composition [28]. The
classification models obtained using public ovarian datasets were based on lipids and proteins patterns
since the m/z range is 700-12.000 [29].

2.2 Evaluation protocol

All datasets were imported without undergoing any preprocessing step. Each dataset were binned
at 0.1 Da, linearly scaled between 0 and 1, and divided randomly into training, validation, and test
with ratios of 60%, 20%, and 20%, respectively. Performance of trained classifiers was measured by
global accuracy on test subsets averaged over 10 independent iterations. For each iteration a stratified
5-fold cross validation was used to maintain the original proportion of minority classes. A weighted
loss function was used during the training for samples from under-represented classes.

Hyper-parameter search We evaluated the effects of hyper-parameter value alterations on the
classification accuracy of the clinical datasets by CNNs. MS data hyper-parameters selection have a
huge impact on the performance, as strong as images. We began with an investigation of the optimal
convolutional filter size for the extraction of spectral features, followed by a search of various learning
rate, including 0.1, 0.01, and 0.001 with reducing learning rate when validation set accuracy stopped
improving during 10 epochs. We investigated the use of two optimizer algorithms, including Adam
and Stochastic gradient descent (SGD). We also searched the use of various batch sizes, including
64, 128, and 256. This evaluation was also done in terms of regularizer technique by adding either
batch normalization, dropout of 0.5 or L1/L2 regularization after each convolutional layer. Using
this approach, we expected to determine what model depth and hyper-parameters are optimal for
classification of MS spectra, especially in the case of highly heterogeneous biological classes such as
canine cancer types.

Protocol for evaluating 2D-CNN adapted to 1D We evaluated and compared the application
of three prominent CNN architectures for classifying spectra in clinical datasets. The first of these was
variant Lecun contained two convolutional layers and two fully connected layers (model 1), adapted
from [30], the second was variant LeNet included three convolutional layers and two fully connected
layers (model 2) [15], and the third was variant VGG9 with six convolutional layers and three fully
connected layers (model 3), adapted from [20].

Protocol for evaluating transfer learning The three CNN architectures were trained on the
large rat brain dataset with all weights initialized according to He normal distribution. Rat brain
dataset was chosen as the source domain data as it was the largest one. The decision layers of the
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network were not useful, since the rat brain and clinical datasets were from different contexts. The
convolutional weights were then frozen so that they would not be updated during back-propagation,
the decision layers were removed, and the new specific decision layers dedicated to smaller clinical
datasets were trained (target domain datasets). Transfer learning from the rat brain dataset allowed
the model to learn and detect generic representations of MS peaks. By freezing the lower CNN levels,
we are assuming that the model has extracted the right patterns, and that only the high level is needed
to take into account specific peak’s features.

Protocol for evaluating cumulative learning Transfer learning in some cases may not be
enough as an aid to classifying biologically similar materials using CNN models. This proximity is
reflected in a high degree of confusion between classes. This is typically the case when the biggest
dataset which is supposed to be used to learn the pivotal data representation is not big enough.
In addition, low-resolution or data heterogeneity can further complicate the classification task. We
therefore proposed two approaches to developing 1D CNN cumulative learning:

Scenario A The first step was to train CNN architectures on the rat brain dataset as described
before for transfer learning. The model weights are then fine-tuned, the decision layers are removed,
and new decision layers are trained with the beef liver dataset, then its weights were frozen and new
specific decision layers were added and trained using the canine cancer dataset. For the human ovary
2 dataset, rat brain weights were frozen and new specific decision layers were added and trained using
the human ovary 1 dataset.

Scenario B CNN architectures were trained on the rat brain and fine-tuned with the beef liver
dataset as described in Scenario A, but instead of testing this model on the canine cancer dataset, an
additional learning was added. Beef liver CNN weights were fine-tuned, decision layers were removed
and new specific decision layers were added and trained using the microorganisms dataset, before
freezing convolutional layer weighting and training new specific decision layers on the canine cancer
dataset. The resulting CNN model from Scenario B was tested with changes to the dimensionality of
the output space (number of classes) and the activation function of the last fully connected layer on
rat brain, beef liver and microorganisms datasets separately. The objective was to assess how much
learning skill the final CNN gained or lost of MS knowledge through successive training.

Protocol for comparing our approach with conventional Machine Learning algorithms
To make such a comparison valid, all spectra were binned similarly, and the same ratio of training,
validation and test subsets was conserved. These conventional algorithms are not designed to classify
MS spectra that have not been preprocessed. In order to compare their performance to that of CNNs on
raw data, spectra were corrected using sequential preprocessing of five steps: (1) Savitzky-Golay-Filter
denoising, (2) baseline subtraction using the statistics-sensitive non-linear iterative peak-clipping, (3)
normalization on the total ion count, (4) alignment using a cubic warping function, (5) and peaks
detection using the median absolute deviation. Chi-square (χ2) statistic was used to reduce data
dimensionality before feeding to the classification algorithms.

3 Results

Hyper-parameter search The regularizer technique, the optimizer algorithm and the learn-
ing rate revealed significant effects on classification accuracy. Batch normalization, used after each
convolutional layer to avoid over-fitting, was found superior to the dropout technique and L1/L2 reg-
ularization. The Adam optimizer with default hyper-parameters β1 = 0.9, β2 = 0.999 and a fixed
learning rate of η = 0.001 was found superior to the SGD algorithm. Adam was carried out using a
cross-entropy loss function. We also found that Max-Pooling was very important in order to account
for peak shift invariance along the m/z dimension. Since batch size did not affect the results, it was
set at 256. ReLu (models 1 and 3) and Leaky Relu (model 2) were chosen as the activation function
for each convolutional layer. We found that large filter size was more effective than image-optimized
filtering (pixel features). This indicates that features extracted from spectral data differ from those
seen in images. The three CNNs architectures and their best hyper-parameters are shown in Figure
1.
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Conv(6,21)                      Conv(16,5)                        Dense(120)          Dense(#classes)
BN, Relu                         BN, Relu                            Relu                    Sigmoid/Softmax
Pooling(2,2)                    Pooling(2,2)

Input              Conv1              Conv2        Flatten      FC1              FC2

Conv(16,21)                 Conv(32,21)              Conv(64,5)                    Dense(2050)          Dense(#classes)
BN, LeakyRelu            BN, LeakyRelu         BN, LeakyRelu              Relu                       Sigmoid/Softmax
Pooling(2,2)                 Pooling(2,2)              Pooling(2,2)                   Dropout(0.5)

Input             Conv1             Conv2              Conv3      Flatten     FC1                FC2

Conv(64,21)                   Conv(64,21)                  Conv(128,11)                    Conv(128,11)                Conv(256,5)                           Conv(256,5)               Dense(4096)         Dense(4096)        Dense(#classes)
BN, Relu                        BN, Relu                       BN, Relu                          BN, Relu                        BN, Relu                               BN, Relu                    Dropout(0.5)         Dropout(0.5)        Sigmoid/Softmax
                                       Pooling(2,2)                                                           Pooling(2,2)                                                                 Pooling(2,2)                Relu                      Relu

Input           Conv1                Conv2                Conv3                 Conv4                  Conv5                 Conv6         Flatten     FC1            FC2           FC3Model 3 : 
variant_VGG9

Model 1 : 
variant_Lecun

Model 2 : 
variant_LeNet

Output

Output

Output

Fig. 1. Architectures of the three CNN models. Convolutional layers are labeled as Conv, flatten layer as
Flatten, and fully connected layers as FC

CNNs classification performance

For canine sarcoma classification, binary (2 classes) classification of tissues as healthy or cancerous
was sought first, followed by differentiation of sarcoma type (12 classes).

Datasets # classes variant Lecun variant LeNet variant VGG9

Canine sarcoma
2 0.98 ± 0.00 0.96 ± 0.01 0.96 ± 0.01

12 0.88 ± 0.03 0.88 ± 0.02 0.90 ± 0.01

Microorganisms 5 0.89 ± 0.02 0.68 ± 0.03 0.61 ± 0.13

Tab. 2. Overall accuracy of classification of SpiderMass spectra using three CNN architectures. The best result
for each task over 10 independent iterations is indicated in boldface.

As shown in Table 2, variant Lecun was the best at binary classification of canine sarcoma, but
when the number of classes was expanded to 12, variant VGG9 was slightly better. This suggests
that deep CNNs might be better at sorting out heterogeneous samples. Variant Lecun was the best
at classifying microorganisms. Accuracy suffers quickly from over-fitting when a deep architecture
such as variant LeNet and variant VGG9 are used on data of this size. The only classification that
could be described as accurate was for canine sarcoma versus healthy tissue (binary classification)
by variant Lecun with an average accuracy of 0.98. Based on this result, we focused our subsequent
efforts on the canine sarcoma and microorganism multi-class classifications.

Transfer learning

Datasets # classes variant Lecun variant LeNet variant VGG9

Canine sarcoma 12 0.90 ± 0.01 (2%) 0.92 ± 0.01 (3%) 0.93 ± 0.02 (3%)

Microorganisms 5 0.99 ± 0.00 (10%) 0.99 ± 0.00 (31%) 0.96 ± 0.02 (36%)

Tab. 3. Overall accuracy of classification of SpiderMass spectra using three CNN architectures after transfer
learning. The improvement in performance from scratch is expressed as a percentage

As shown in Table 3, transfer learning clearly improved the accuracy of classification of both small
SpiderMass datasets compared to the models trained from scratch (without transfer learning). Gains
in the accuracy of canine sarcoma differentiation were obtained for all three architectures, although
much room for improvement remained. variant LeNet and variant VGG9 predicted the correct classes
with almost equal success. Improvements was considerable also for the 5-class microorganism task, and
huge in the case of variant VGG9. These results suggest that training a CNN model with extracted
spectral features transferred even from an unrelated field is better than training it with spectral
features learned from scratch with a small dataset. The aim of the following experiments was to
improve the canine sarcoma multi-class classification performance.

Paper 216

100



Cumulative learning

Two scenarios were tested: (A) training on intermediate beef liver and then on canine cancer
dataset; (B) training on beef liver, then on microorganisms and lastly on canine cancer dataset.

Protocol variant Lecun variant LeNet variant VGG9

Scenario A 0.92 ± 0.01 (4%∗ 2%∗∗) 0.95 ± 0.01 (7%∗ 4%∗∗) 0.94 ± 0.01 (4%∗ 1%∗∗)

Scenario B 0.95 ± 0.02 (7%∗ 5%∗∗ 3%∗∗∗) 0.99 ± 0.00 (10%∗ 7%∗∗ 3%∗∗∗) 0.96 ± 0.00 (6%∗ 3%∗∗ 2%∗∗∗)

Tab. 4. Overall accuracy of canine sarcoma classification by the three CNN architectures. The improvement
in performance is expressed as a percentage relative to learning from scratch∗, to transfer learning∗∗, and to
Scenario A∗∗∗

As shown in Table 4, Scenario A improved the classification accuracy considerably relative to
learning from scratch and slightly relative to transfer learning, the best improvements being obtained
for variant LeNet. Scenario B provided a slight additional improvement over Scenario A, and the
greatest accuracy was achieved also with variant LeNet architecture. The effectiveness of the cumula-
tive knowledge method is thus apparent, enabling the CNNs to distinguish not only cancerous versus
healthy tissues (binary classification), but also the different cancer types despite the small size and
the heterogeneity of the dataset.

Classification accuracy obtained by CNN from scratch on data used for the training (rat brain
and beef liver) and after transfer learning for microorganism (Table 3) was equal to 0.99. Testing
the final cumulative representation of variant LeNet (from Scenario B) on rat brain, beef liver and
microorganism datasets separately did not show improvement of the classification accuracy from 0.99.
This indicates that the CNN model accumulates MS knowledge through the successive training phases
without any losses.

Public MS datasets classification

We assessed CNNs performance following the same training and evaluation approach, but with
variant LeNet architecture only, because of its superior performance with SpiderMass datasets and
its low computational resources needed. Variant LeNet was thus trained on the rat brain dataset as
the source domain, followed by the transfer learning protocol using the high-resolution dataset and
representation-learning Scenario A using the low-resolution dataset.

Dataset # classes variant LeNet Transfer learning

Human ovary 1 2 0.78 ± 0.02 0.98 ± 0.00 (24%∗)

Dataset # classes variant LeNet Transfer learning Cumulative learning

Human ovary 2 2 0.80 ± 0.00 0.83 ± 0.02 (3%∗) 0.99 ± 0.00 (24%∗ 19%∗∗)

Tab. 5. Overall accuracy of a variant LeNet architecture at classifying ovarian cancer serums; percent improve-
ment relative to learning from scratch∗ and to transfer learning∗∗

Transfer learning improved classification accuracy from 0.78 for training from scratch to 0.98 for
the high-resolution dataset (Table 5). With the low-resolution dataset, accuracy was improved from
0.80 to 0.83 by transfer learning and to 0.99 by cumulative learning. These results show that in
contrast with the previously reported lack of sensitivity and specificity of low-resolution MS datasets
for cancer diagnosis [29], our CNN representation model was up to the task and without any need for
spectral preprocessing steps.

Performance of conventional algorithms applied to preprocessed datasets

As shown in Table 6, RF outperformed the other methods, while LDA was best only for human ovary 2
classification. Performance of RF and LDA was not comparable to that of CNNs. In addition, RF and
LDA require more time to carry out the necessary preprocessing steps and to determine the optimal
hyper-parameters since datasets had different artifacts and therefore required different preprocessing
strategies.
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Datasets # classes SVM RF LDA

Canine sarcoma
2 0.76 ± 0.16 (22%∗) 0.96 ± 0.01 (2%∗) 0.88 ± 0.17 (10%∗)

12 0.52 ± 0.19 (47%∗∗∗) 0.65± 0.01 (34%∗∗∗) 0.61 ± 0.02 (38%∗∗∗)

Microorganisms 5 0.54 ± 0.35 (45%∗∗) 0.86 ± 0.01 (13%∗∗) 0.51 ± 0.26 (48%∗∗)

Human ovary 1 2 0.66 ± 0.24 (49%∗∗∗) 0.91 ± 0.02 (8%∗∗∗) 0.85 ± 0.06 (15%∗∗∗)

Human ovary 2 2 0.60 ± 0.05 (65%∗∗) 0.88 ± 0.03 (12%∗∗) 0.97 ± 0.00 (2%∗∗)

Tab. 6. Overall accuracies of clinical spectra classifications by SVM, RF, and LDA; percent of difference to 1D
CNN trained from scratch∗, from transfer learning∗∗, and from representation learning∗∗∗

4 Discussion and Conclusions

CNNs have become common tools in several research areas. They are designed to extract spatial
features from input signals with different levels of abstraction. We have investigated here the perfor-
mance of CNNs in the classification of 1D mass spectra generated for clinical purposes. This study
shows for the first time the use of cumulative learning for 1D spectrum classification of datasets gener-
ated in vastly different biological contexts, on different organisms, acquired by a variety of instruments
and technologies at different resolutions. Our CNN model was designed by accumulating mass spectral
knowledge through multiple training steps on small datasets. It provided a viable alternative when
transfer learning was inadequate, as was the case for low-resolution, heterogeneous MS data, or when
the source domain dataset was not large enough. The novelty is that the model can be pre-trained
on a dataset containing only two output categories and yet predict 2, 5 and even 12 outputs, that
are unlikely to share common features. Our CNN model was able to classify raw MS data without
preprocessing steps, thus bypassing the expert parameter setting step. This performance capability
is due to convolutional filters that allow CNN architecture to learn peak patterns rather than only
considering each m/z intensity value separately as do conventional algorithms. More importantly, sig-
nificant variations of the overall signal intensity due to biological heterogeneity and non-reproducible
technical factors (not all peaks showing up in each sample) are taken into account in the pattern
recognition of CNNs. In the present study, we investigated the performance of our learning approach
for MS data classification. It would be interesting to extend the investigation to analyze which data
characteristics are similar between the different datasets. The focus of future research will be the
interpretation of classification results in order to identify regions of interest in spectra, which may
correspond to new biomarkers. It would be also interesting to understand how the relative abundance
and position of such biomarkers might be used to discover new therapeutic or diagnostic targets.
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Introduction: DNA replication follows a spatiotemporal program that ensures the faithful replica-
tion of genomes at each cell cycle. In vertebrate genomes, DNA replication initiates at precise genomic
regions, called replication origins. While DNA replication is one of the most important process of cells’
life, the molecular mechanisms inducing the firing of replication are still poorly understood [1]. No-
tably, the question of whether origins positioning in vertebrates is determined by sequence structures
or by epigenetic marks remains unresolved. To study the genetic determinants of replication origins,
we conducted an evolutionary analysis of replication origins in vertebrates.

Methods: We generated a genome-wide map of chicken origins (the first of a bird genome), and
reanalyzed published SNS sequencing data from human [2] and mouse genomes [3] using the same
peak-calling methodology to ensure that the sensitivity of origin detection was similar in all species.

Results: Comparing maps of replication origins in vertebrates, we find origins to be associated to
the same genomic elements (namely G-quadruplexes, CpG islands and transcription start sites) in all
species, confirming the importance of these elements in replication firing. Next, we analysed the intra-
species polymorphism at origins loci. Our study revealed a strong depletion of genetic diversity at the
core of replication initiation loci, showing that origins are associated to strong sequence constraints
and that mutations in these regions have a deleterious effect. In contrast, inter-species comparisons
revealed very limited conservation of replication origins on larger evolutionary scale. Indeed, we found
that replication landscapes have been largely remodeled during the evolution of vertebrates. While
the replication initiation activity in human and chicken genomes is concentrated in clusters of very
active loci, the mouse genome presents a more uniform distribution. In addition, we showed that
origins experienced a rapid turnover during vertebrate evolution, since pairwise comparisons of origin
maps revealed that < 24% of them are conserved among vertebrates.

Conclusion: Our study highlights the flexibility of the spatial program of replication in vertebrate
genomes, unraveling the existence of a novel genetic determinant of replication origins in vertebrates,
the precise nature of which remains to be determined.
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Over the past few years the volume of nucleic acid sequencing has continued to grow dramatically. This 
sequence data encodes millions of proteins, the vast majority of which have never been experimentally 
characterized. To overcome this paucity of information, the function of these protein sequences is inferred 
through the automatic transfer of information from a few experimentally characterized sequences. InterPro 
(http://www.ebi.ac.uk/interpro/) is the largest source for automatic annotation of sequences in the UniProt 
Knowledgebase (UniProtKB) [1]. InterPro consists of a consortium of 13 member databases: CATH-Gene3D 
[2], the Conserved Domains Database (CDD) [3], HAMAP [4], PANTHER [5], Pfam [6], PIRSF [7], PRINTS 
[8], PROSITE Patterns [9], PROSITE Profiles [9], SMART [10], the Structure–Function Linkage Database 
(SFLD) [11], SUPERFAMILY [12] and TIGRFAMs [13]. These member databases use different 
methodologies, such as profile hidden Markov models (HMMs) or regular expressions, in order to predict 
protein signatures. These different signatures are integrated to InterPro entries, containing one or more 
equivalent signatures. As, each InterPro member database has a different area of expertise, collectively they 
offer complementary levels of protein classification, reflected in the InterPro classification. A few member 
databases also offer amino acid residue-level annotation, including catalytic residues and those that are 
involved in ligand binding, to date two of them are available in InterPro: CDD and SFLD. InterPro also 
provides additional information about sequence features, such as consensus annotation of long-range intrinsic 
disorder (provided by MobiDB-lite [14]), and prediction of signal peptides, transmembrane regions and coiled-
coils, via the SignalP, Phobius, TMHMM and Coils software packages [15-18]. InterPro is widely disseminated 
and utilised by the scientific community, and the database is recognised by ELIXIR as a core data resource 
[19].  

InterPro releases are made available every two months through the InterPro website and download. To deal 
with the growing volume of sequence data and an increasing demand to retrieve subsets of the data, often via 
programmatic access, we have developed an entirely new website, released in 2019. It provides additional 
features and more flexibility in querying, presenting and retrieving data. InterPro can be searched through 
different ways including a protein sequence search, relying on the InterProScan software [20], a text search 
and a search by domain architecture. The website is based on an Application Programming Interface (API) 
which can also be utilised by users for direct access to the data. The API is designed around a Representational 
State Transfer (REST) framework, it offers six main endpoints, each corresponding to a key data type in 
InterPro: Entries, Proteins, Structures, Sets, Proteomes and Taxonomies. One of the new features available on 
the website is the Browse page: users can explore, search and filter the Entries, Proteins, Structures, 
Taxonomies, Proteomes and Sets data types. Another additional feature is the Download page, which allows 
users to select data types, apply filters and format as required. The website utilizes a series of web components 
to display different data types. The representations of protein sequences in the Protein pages, Structure pages 
and in the domain architectures section of the Entry pages use an extended version of ProtVista [21] to display 
sequence match positions. An adapted version of the LiteMol viewer [22] enables 3-dimensional (3D) 
visualization of entries and structures. A link between those two components has been made on the Structure 
pages to enable users to highlight regions on 3D representations of protein structures corresponding to the 
ProtVista linear representation of families and domains. These developments extend and enrich the information 
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provided by InterPro and provide unparalleled flexibility in terms of data access. 
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The SARS-CoV-2 coronavirus, the etiologic agent responsible for COVID-19 coronavirus 
disease, is a global threat. This pathogen propagates in the respiratory tract and can lead to acute 
respiratory distress. The airways are the first line of defense to this virus. Prior to COVID-19 
pandemic, we characterized the respiratory tract unique cellular ecosystem by single-cell profiling 
methods, investigating the cell population distributions and transcriptional changes along the 
airways.  

Analysis of the human airway epithelium in 10 healthy living volunteers by single-cell RNA 
profiling (https://www.genomique.info/cellbrowser/HCA/) was performed on 77,969 cells were 
collected at 35 distinct locations, from the nose to the 12th division of the airway tree. We 
performed a deep quality control analysis, removing doublet cells and ambient RNA background. 
We integrated all samples together in one single dataset after appropriate batch removal. The 
resulting atlas is composed of a high percentage of epithelial cells (89.1%), but also immune (6.2%) 
and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It 
reveals differential gene expression between identical cell types (suprabasal, secretory, and 
multiciliated cells) from the nose and tracheobronchial airways. By contrast, cell-type specific gene 
expression is stable across all tracheobronchial samples. Our atlas improves the description of rare 
cells like ionocytes [1], pulmonary neuro-endocrine (PNEC) and brush cells. 

Our laboratory belongs to the Lung Biological Network of the Human Cell Atlas, the 
international consortium involved in the construction of a full atlas of the human cells. In a 
community effort, we used our datasets [2], [3] and a previously publish lung atlas [4] to better 
understand viral tropism of the SARS-CoV-2 (https://www.covid19cellatlas.org/). We assessed the 
RNA expression of the coronavirus receptor, ACE2, as well as the viral S protein priming 
protease TMPRSS2 that governs viral entry [5], [6]. In-depth bioinformatic analysis of epithelial 
cells in the respiratory tree reveals that nasal goblet/secretory cells and multiciliated cells display 
the highest ACE2 expression of all analyzed airway epithelial cells. We demonstrated that many of 
the top genes associated with ACE2 airway epithelial expression are innate immune-associated, 
antiviral genes, highly enriched in the nasal epithelial cells. This suggests a particular relevant role 
for nasal goblet and ciliated cells as early viral targets and potential reservoirs of SARS-CoV-2 
infection. We expect that our study will serve as a biological framework for dissecting viral 
transmission and developing clinical strategies for prevention and therapy. 
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